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Abstract 
We uncover the temporal patterns of the prices of risk through industry portfolios with 
varying sensitivities to the economic and financial cycles. Conditioning on the highs and 
lows of the cycles is key for statistical significance of the intertemporal component. Unlike 
market risk, its price decreases during an economic downturn but increases under tight 
funding conditions. Predictive machine learning models and their SHAP values suggest 
that a limited number of firm characteristics convey the most informative signals about 
asset risk premia. Valuation ratios are more important determinants for Cyclical relative 
to Defensive industries, whereas Return characteristics become crucial during 
recessions. 
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1 Introduction

Prices of risk in financial markets change through the economic and financial cycles as a result

of a variety of factors. As conditions evolve over time, so do the perception of risk and market

sentiment, resulting in, for example, higher risk appetite and lower risk premiums in economic

booms. In these periods, companies tend to report strong(er) earnings, which further incentivizes

risk-taking and lowers the prices of risk. The variation in the economic environment also triggers

central banks’ reaction to changing interest rates, which in turn alters demand for assets and risk

prices.

The analysis of the risk-return trade-off, however, has represented a challenge for the empirical

asset pricing literature. For instance, the magnitude of the price of the market risk, its statistical

significance, and even its sign have been largely debated. A number of possible explanations have

been put forward for the conflicting evidence, mostly attributing those findings to the omission of

some factors in the pricing equation. Indeed from a theoretical standpoint, going back to Merton

(1973)’s seminal paper, expected returns depend on compensation for bearing market risk as well

as on the intertemporal hedging demand related to additional factors which proxy for changes in

the investment opportunity set. Although the empirical investigation of the role of the intertem-

poral risk factor on asset prices is now quite extensive, less is known about the dynamics of the

compensation for these risk factors through states of the economy.1 Moreover, what drives the

dynamics of expected returns and which ones among the large number of firm characteristics gain

investors’ attention in the evolving economic environment is not well understood.

We contribute to this strand of literature by investigating the behavior of the prices of in-

tertemporal risk through the economic and financial cycles with the help of industry portfolios.

As we intend to capture investors’ assessment of changing investment opportunities in the econ-

omy, we employ a fully conditional ICAPM framework and examine the dynamics in the expected

compensation for risk. We adopt and expand the methodology of Bali and Engle (2010) who use

time-varying conditional covariances of assets with risk factors, generated separately, to estimate

1See, among others, Whitelaw (2000), Scruggs and Glabadanidis (2003), Brennan, Wang, and Xia (2004), Ang,
Hodrick, Xing, and Zhang (2006b), Gerard and Wu (2006), Guo (2006), Hahn and Lee (2006), Petkova (2006), Guo
and Whitelaw (2006), Bali (2008), Guo and Savickas (2008), Bollerslev, Tauchen, and Zhou (2009), Chen and Zhao
(2009), Ozoguz (2009), Bali and Engle (2010), Bollerslev and Todorov (2011), Wachter (2013), Gagliardini, Ossola,
and Scaillet (2016), Barroso, Boons, and Karehnke (2021).
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the risk-return trade-off within a panel regression. In our implementation, we also incorporate

the impact of investors’ information set on the estimation of the conditional prices of risk. The

specification of our empirical asset pricing model is thus internally consistent in the sense that it

is both conditional and intertemporal.

Although our goal is to capture the dynamics of the risk-return trade-off in the time series, we

gain power with the help of a large cross-section as we constrain the coefficients in estimating the

prices of risk. To this aim, and to control for strong factor structure in the test assets (Lewellen,

Nagel, and Shanken, 2010), we choose to study 49 industry portfolios, which are exposed to vari-

ous economic shocks and thus perform differently through the business cycle. We follow previous

research in selecting the empirical proxies that capture the risk from shifts in investment opportu-

nities, investigating the role of long-term bond returns and innovations in variables associated with

the macroeconomic environment as intertemporal risk factors. We analyze their contribution to

the prices of risk from 1986 to 2022, covering the past four NBER recessions, and cross-check our

findings with even a longer sample of the last 61 years, albeit with a smaller cross-section of assets

and conditioning variables. In a subsequent step, we use a host of advanced machine learning tech-

niques, in a framework similar to Gu, Kelly, and Xiu (2020), to discriminate among a large number

of firm characteristics and to understand how they drive the compensation for the postulated risk

factors through the economic and related financial cycle.

Differently from the reward for market risk, we find that the reward for intertemporal risk

is significant only over ranges of the distribution of the conditioning information variable which

correspond to distinct phases of the cycles. For instance, the risk prices of the long-term Bond

or of changes in Default Premium, two proxies that negatively correlate with the market portfolio

returns, are estimated as positive and significant when the aggregate dividend yield is below its

mean. However, as the dividend yield increases, say during the recession periods, the economic

and statistical importance of these risk factors decrease. Over this range, we instead observe

an opposite trend and statistical significance for the changes in Term Spread, which on average

correlates positively with the market portfolio. Conditioning on other financial variables, such as

the TED spread or the VIX index, we find that the price of intertemporal risk is heightened in

periods when investors’ funding liquidity dries up or when their risk appetite decreases. On the

other hand, we show that conditioning information is not crucial to finding support for market risk.
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With the full information set, we find that the estimated time-varying price of market risk is

increasingly positive in the recession patterns of the conditioning variables. Even more interesting

are the dynamics of the intertemporal risk prices. The risk price for the innovations in the Term

Spread is increasing while the prices for the long-term Bond and innovations in the Default Premium

are decreasing during the recession periods compared to the expansions. Taking into consideration

that most of the intertemporal risk proxies have negative covariances with the assets, that also

become larger during bad times, the evidence overall suggests that the risk prices generate a negative

component in the asset total risk premia. Analyzing the contribution of each risk factor, we show

that the share of intertemporal risk is substantial, accounting overall for almost half of the total risk

premia, with the innovations in Default Premium the most relevant of the intertemporal factors.

Through the business cycle, we find that the share of market risk relatively increases while that of

intertemporal risk decreases during recessions. In the cross-section, market risk contributes more

to the Cyclical industries’ risk premia, whose sales are more heavily affected during recessions.

Conversely, the intertemporal risk factors such as changes in Term Spread or in Default Premium

contribute relatively more to the risk premia of the firms in the Defensive sectors.

The time variation in the relationship between expected returns and risk through the cycles is

thus in line with our intuition from the intertemporal pricing model that the increasing likelihood of

bad times leads to revisions in investors’ risk assessment about the future. It is also consistent with

the empirical evidence from the predictability literature going back to Ferson and Harvey (1991),

which suggests that the required reward for risk varies with the information about economic con-

ditions that is publicly available to investors. With the help of a cross-section of assets exhibiting

different correlations with the economy and the market, we further show that conditioning infor-

mation is even more important in identifying significant intertemporal risk. Overall the evidence

strongly indicates that accounting for the variation through the highs and lows in the economic

and financial cycles is a key aspect of capturing such component.

In the second part of the paper, we discriminate among a large number of firms’ characteristics

to identify the important determinants and rank the extent of their association with the estimated

risk premia. We exploit the information content of 73 characteristics, across nine categories covering

topics such as firms’ financial performance, liquidity, solvency, valuation, and profitability, as well

as their capital structure and efficient use of resources. Previous asset pricing research shows that
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some of these characteristics are informative about firms’ fundamental values and changes in their

stock price.2 In our analysis, we adopt a machine learning approach suitable to high-dimensional

settings due to issues related to dimensionality, multicollinearity, and nonlinearity that are pervasive

in these data. For our purpose, we exploit recent developments in the field of Explainable Artificial

Intelligence, specifically the use of SHAP value (Lundberg and Lee, 2017).3 SHAP is a unified

framework for explaining the output of machine learning models and responds to some of their

shortcomings. In fact, although advanced machine learning techniques generally outperform linear

models in fitting the data (see, for example, Gu et al., 2020 and Akbari, Ng, and Solnik, 2021),

they often provide little intuition of the underlying structural relationship between the explanatory

variables and the dependent variable. Instead, SHAP values provide a fair and consistent way

to attribute the contribution of a feature to the predicted outcome, both in comparison to other

features and to a specific point over the range of the time sample, even in the presence of feature

interactions and dependencies.

Our feature attribution analysis reveals that the Return and Valuation categories become par-

ticularly important during the recession periods. For instance, the calculated SHAP values for the

firms’ volatility and Shiller’s Cyclically Adjusted P/E ratio increase by 135.5% and 139.9%, making

them the most important feature of our set in bad times. Changes in investors’ risk appetite, their

loss aversion, and their attention to the downside risk might be the underlying mechanism for this

finding (Ang, Chen, and Xing, 2006a; Bollerslev, Patton, and Quaedvlieg, 2022). In addition, P/E

ratios point to the importance of corporate sales, whose variation results in profit swings during

the business cycle. In line with their SHAP values associated with the expected returns, the mag-

nitude of those characteristics also changes significantly during recession periods. On average in

our sample, firms are 87.4% more volatile and record 19.8% less P/E ratios at these times.

When we focus on differences across Cyclical and Defensive sectors, whose sales deviate the

most in the business cycle, our analysis suggests that Return and Valuation features are indeed

the most impactful determinants for the risk premia. The SHAP values for firms in those sectors

vary the most across these categories; Return category SHAP values are 3.452 point estimates

2See for example, Bhandari (1988), Campbell and Shiller (2001), Chen and Zhang (2007), Soliman (2008), Ball,
Gerakos, Linnainmaa, and Nikolaev (2016), Medhat and Schmeling (2022).

3SHAP stands for SHapley Additive exPlanations. The concept of SHAP values is rooted in the Shapley value
in cooperative game theory, where the marginal contribution of each player to each game output is measured.
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larger for Defensive sector firms and the Valuation SHAP values are 2.682 point estimates larger

for Cyclical ones. These are meaningful metrics. In fact, the difference between any two sectors in

any feature category SHAP values is smaller than the values above. Financial Soundness matters

for both. However, features of the Return category are more important determinants than those

of the Efficiency category for Defensive industries, with the opposite for the Cyclical industries. If

investors’ demand for defensive stocks is driven by the hedging that they provide against economic

downturns, then investors are expected to pay more attention to the risk profiles of these firms. This

is consistent also with our findings that firms’ volatility and payables turnover ratio are much more

important features for those firms compared to the Cyclical ones. The contribution of this analysis

is in helping investors sort through the large number of signals conveyed by these characteristics,

differentiating across the economic and financial cycles and across sectors.

The remainder of the paper is organized as follows. Section 2 presents the empirical model and

the estimation methodology. The data description is in Section 3. The analysis of the price of risk

through time and feature contribution to the estimated risk premia are discussed in Sections 4 and

Section 5. Section 6 concludes.

2 Empirical Methodology

2.1 Asset pricing specification

Theoretical intertemporal risk models show that in a dynamic economy, investors are compensated

in equilibrium for the contemporaneous exposure of their portfolio to market risk, as well as to the

risk of future shifts in the investment opportunity set (see Merton, 1973; Campbell, 1993). This is

the result of the hedging demands of forward-looking investors who anticipate stochastic changes

in investment opportunities and yearn to achieve smooth consumption through time and possible

states of nature. In these models, the general relationship between asset returns is governed by the

following intertemporal asset pricing model (ICAPM):

Et−1 [Rt − rf,t−1] = λtCovt−1 (Rt, rm,t) + γ ′
tCovt−1 (Rt, Zt) (1)
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Where rf,t is the risk-free rate, Rt is a vector of N asset returns (each denoted by ri,t), rm,t is

the market return and Zt are the L state variables (each denoted by zj,t) that predict changes in

the future investment opportunity set, all computed for period t. Et [·] denotes the conditional

expectation operator, based on the information available at time t. Similarly, Covt (R, ·) denotes

the conditional covariance between asset returns and market portfolio (or the state variables). λt

and γt denote the price of market and intertemporal risk, respectively.

There are different approaches in the empirical asset pricing literature to estimate this model.

We take a fully parametric approach, where quantities of interest in Equation (1) are recovered

through several steps. The next subsection discusses how we estimate the conditional second

moments and the prices of risk.

2.2 Empirical specification for the price of risk

We first separately estimate time-varying covariances for each asset, implementing the Asymmetric

Dynamic Conditional Correlation (ADCC) specification proposed by Cappiello, Engle, and Shep-

pard (2006).4 This allows us to accommodate different comovement in recession and expansions

(Longin and Solnik, 2001). Then we specify an asset pricing model and estimate the common prices

of risk through linear panel regressions, using the fitted conditional covariances as regressors. For

this step, we extend Bali and Engle’s 2010 methodology, who estimate a constant price of risk, by

further conditioning the price coefficients of the model on a set of information variables through

interactions. More formally, our empirical specification of Equation (1) is:

ri,t − rf,t−1 = αt−1 + λt−1Covt−1 (ri,t, rm,t) +
L∑

j=1

γt−1,jCovt−1 (ri,t, zj,t) + ϵi,t (2)

where, αt−1 = α
′
IVt−1, λt−1 = λ

′
IVt−1, and γt−1,j = γ

′
jIVt−1. IVt is a set of K demeaned infor-

mation variables, available to investors at time t and includes a constant. The bold symbols are

vectors of coefficients for each information variable. Consistent with ICAPM theory, we construct

the panel such that all test assets face equal prices of risk, i.e. λt and γt,j . Excluding the informa-

tion variables from the vector IVt, this specification nests the constant price of risk model, as in

4Please refer to Appendix A for a detailed explanation of the ADCC methodology and a discussion of the
estimation results.
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Bali (2008), where the prices of risk are considered to be time-invariant (See Appendix B).

In this setting, the conditional prices of risk can be interpreted as the derivative of the excess

returns with respect to their covariance with the respective state variable. Thus, it is straightfor-

ward to derive their conditional standard errors from (2). For example, for the price of market risk,

λt, we have:

Var

(
∂Ri

∂Cov (Ri, Rm)

∣∣∣∣ IV )
=Var (λ0 )+IV 2 Var (λ1 )+2IV Cov (λ0, λ1 ) (3)

Here, λ0 is the first element of the vector λ and represents the coefficient for the constant in the

IVt while λ1 is the second element that represents the coefficient for the information variable in

the IVt.
5 The conditional intercept, αt, and the conditional price of the intertemporal risk factors,

γt,j , are similarly estimated. Based on these conditional estimates, we then calculate confidence

intervals at each time period and for each price of risk. These allow us to study changes in the

conditional prices of risk both in the time domain (i.e., a specific period) and in the information

variable domain (i.e., a specific range of the variable’s distribution values).

2.3 Risk Factor Contribution

Once the time-varying measures of risk Ĉovt(., .), and the price of risk, e.g., λ̂t, are estimated for

each factor, we calculate the required reward from that factor based on the product of these values.

Then we compute the magnitude of that reward in comparison to that of the other factors, for each

asset at each point in time. We interpret this metric as the relative contribution of each factor to

the asset’s risk premia. For instance, for the market risk:

MarketFC
i,t =

∣∣∣λ̂tĈovt (Ri,t+1, Rm,t+1)
∣∣∣∣∣∣λ̂tĈovt (Ri,t+1, Rm,t+1)

∣∣∣+∑
j

∣∣∣γ̂t,jĈovt (Ri,t+1, zj,t+1)
∣∣∣ (4)

By taking the absolute values, we consider the same weight for the positive and negative effects

of each risk factor. The contribution of a factor over a certain subperiod τ and subset of assets G

5For ease of exposition we present the case of only one information variable in the IVt set. Appendix C provides
the conditional variances of the estimates in the case of K information variables.
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is then defined by the mean of these values in that subsample:

MarketFC
G,τ =

1

||G|| × ||τ ||
∑
i∈G

∑
t∈τ

MarketFC
i,t (5)

Where the operator ||.|| denotes the size of the subsample. Therefore, higher values for MarketFC
G,τ

indicate that market risk represents a larger share of the risk premia over subperiod τ and for

subset G.

2.4 Feature Attribution and SHAP Values

In the last step, we explore through the business cycle and across industries the drivers of the

assets’ estimated risk premia. To this aim, we exploit the information content of a rich set of

industry characteristics, which are commonly used in the asset pricing literature to investigate how

these characteristics contribute to the cross-section of expected stock returns.6 Due to issues of

dimensionality, multicollinearity, and nonlinearity, ordinary least square techniques are not suit-

able for inferring their association with expected returns. Therefore, we benefit from the recent

developments in the field of high-dimensional machine learning methods to overcome the empirical

challenge. Appendix D introduces these methods and Section 5.2 discusses our selection procedure.

Although these advanced machine learning techniques tend to outperform linear ones in fitting

the data, they offer little intuition of the underlying structural relationship between the explanatory

and dependent variables. More specifically, it is not clear which drivers are predominant and,

importantly, at which periods certain features contribute to the model outcome more strongly. To

address these questions, we exploit SHAP values for each explanatory variable, constructed from

the fitted values of the machine learning model.7,8

6A growing literature uses firm characteristics with machine learning algorithms to forecast stock returns (see,
for instance, Rapach, Strauss, Tu, and Zhou, 2019; Freyberger, Neuhierl, and Weber, 2020; Gu et al., 2020; Kozak,
Nagel, and Santosh, 2020; Leippold, Wang, and Zhou, 2022; Bryzgalova, Pelger, and Zhu, 2023). Differently from
this literature, we focus on model-implied expected returns to study which firm characteristics shape prices of risk
through the business cycle.

7Analyzing firm-level returns, Demirbaga and Xu (2023) also use SHAP values to explain the reasoning behind
return predictions made by various complex machine learning models.

8An alternative approach to enhance the explainability of machine learning models is the Local Interpretable
Model-agnostic Explanations (LIME) technique (Ribeiro, Singh, and Guestrin, 2016), which provides a linear ap-
proximation of the model for each predicted value. The advantage of the SHAP technique over LIME is that it offers
a global explanation based on the entire dataset, not just one observation. Thus it results in importance metrics that
are consistent across all model outcomes.
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SHAP stands for SHapley Additive exPlanations and is a unified framework for explaining the

output of machine learning models (Lundberg and Lee, 2017). In simple terms, SHAP quantifies

the marginal contribution of each feature to the prediction made for each observation. The core

concept is rooted in the Shapley value from cooperative game theory, which quantifies the marginal

contribution of each player to the game, based on the outcomes of all possible combinations of

players. In the following, we explain this concept in our context and in the same spirit of R-

squared calculations, which we assume is more familiar to finance researchers.

The spread between the fitted values of a specific model that encompasses all features and

the average value of the dependent variable represents the aggregate contribution of all features

compared to a näıve estimator that only predicts the mean of the sample. SHAP extends this idea to

each feature k = 1, ...,K. The procedure to calculate the Exact SHAP values involves constructing

a set of all possible combinations of features.9 That is, we draw n = 1, . . . , K features from the

whole set of explanatory variables, and label the subset X l (l = 1, . . . , L and L = 2K). Then we

train our choice of machine learning technique using this set of features on the whole sample of

observations. Let f{Θl}
(
X l

m

)
denote the fitted value for observation m (industry i - week t) from

the subset l which has n features. Θl is the set of learnable parameters for the model. We repeat

this procedure for all possible combinations of n features.

Suppose X l is a coalition set of explanatory variables with n − 1 features except for feature

k, and let X l ∪ k be the set of the same explanatory variables which also includes feature k. The

marginal contribution of feature k for the fitted values at observation m with respect to these sets

is:

MCl;k;n(m) = f{Θl ∪ k}
(
X l ∪ k

m

)
− f{Θl}

(
X l

m

)
(6)

Note that for n = 1, X l ∪ k only includes feature k and X l is an empty vector with no features, and

thus f{Θl}
(
X l

m

)
is an estimator which simply predicts the mean values of the dependent variable.

For n = 2, X l ∪ k could be K−1 different sets that include feature k in addition to one more feature

and X l only includes that other feature. Similarly, for n = K, X l ∪ k includes all K features (i.e.,

it is X) and X l includes all but feature k. SHAP values for feature k are calculated by aggregating

9Lundberg and Lee (2017) consider path dependencies in a decision tree, which reduces the computational com-
plexity. Furthermore, their Python library employs approximations and stochastic samplings to further decrease the
need to train models based on all the possible combinations of features.
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these marginal contributions across all coalition sets:

SHAPk (m) =
L∑
l=1

wj;l;n ×MCl;k;n(m) (7)

Where wj;l;n is the weight for the marginal contribution of feature k in set l ∪ k, which includes n

features. There are several restrictions on these weights. First, they sum up to one. Furthermore,

due to symmetry, the weights of the marginal contributions for all n-feature models are equal.

Lastly, to impose a fair attribution at each concession across these additive coalition sets, the sum

of the weights of marginal contributions for n-feature models is equal to the sum of the weights

for p-feature-models (for any p = 1, . . .,K). The weight of a marginal contribution for a n-feature

model is the reciprocal of the number of possible marginal contributions to all the n-feature models.

These conditions result in a unique solution for these weights.

Once the SHAP values of each feature are calculated for each observation, we take their mean

absolute values over asset subset G and subperiod τ to measure the importance of each feature,

similar to Equation (5).

SHAPk,G,τ =
1

||G|| × ||τ ||
∑

m∈G∩τ
|SHAPk (m)| (8)

Due to their additive nature, the SHAP values of all the input features will always sum up to

the difference between the current model’s predicted output and the mean of the sample, a näıve

baseline estimator’s output. That is, we have
∑K

k=1 SHAPk (m) = E[y] − fΘ(Xm). Note that

the SHAP value of feature k for observation m can be positive (negative) if this feature increases

(decreases) the predicted outcome of the model for that observation. Thus its importance is gauged

by the magnitude of its contribution to fΘ(Xm), not its sign. Like a higher R-squared, a higher

SHAP value suggests that the feature has a better association with the model outcome and thus we

interpret that feature as a more important determinant of the estimated risk premia. Ultimately,

we rely on SHAP values to discriminate and rank across all possible features.
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3 Data

This section illustrates the data used in the empirical analysis. We study weekly US industry

returns from the start of January 1986 to the end of December 2022, in an ICAPM framework

which is augmented with macroeconomic risk factors and conditional on a set of commonly used

information variables.

Filtering out stock properties linked to daily market-microstructure effects, the weekly frequency

is particularly suited to our study, given the goal of capturing the impact of the economic and

financial cycles. Since there is no generally recognized method to mark their evolving phases, in

some of our tests we use NBER dating as a proxy method to identify the stages of the cycles.

Over the 1930-week sample, the NBER recessions cover 157 weeks or 8.13 percent. Furthermore,

the average duration of a recession is 39 weeks, thus a lower frequency, say monthly or quarterly,

would decrease statistical power. The choice of the starting date is due to the availability of the

conditioning variables with weekly frequency.10

3.1 Test assets

Inspired by Lewellen et al. (2010) and Daniel and Titman (2012), who argue that the usual test

assets in cross-sectional studies (e.g., 25 size/Book-to-Market portfolios) have strong factor struc-

ture, we study industry portfolios. Furthermore, we take their recommendation and use the largest

cross-section available for these portfolios. More specifically, we study the 49 industry portfolios

based on firms’ four-digit SIC code, downloaded as daily data from Kenneth French’s online data

library and compounded linearly to obtain weekly returns. Summary statistics of these samples

are provided in Table 1.

[Place Table 1 about here]

In our classification of industries, we start from Morningstar Stock Sector description that

distinguishes Cyclical Super Sectors (highly sensitive to business cycle peaks and troughs), Defensive

10Relaxing this constraint, we extend our analysis using the data from January 2nd, 1962. Due to missing obser-
vations in the early period, and because our estimation approach requires a balanced panel, this results in five fewer
industry portfolios and two fewer information variables. Our overall conclusion is not altered by this choice. The
detailed results are available upon request from the authors.
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Super Sectors (with anti-cyclical industries), and Sensitive Super Sectors (industries with moderate

correlations with the business cycle). We attribute most of the disaggregated industries to one of

these Super Sectors, validating our analysis with research from the Bureau of Labor Statistics that

quantifies the sensitivity of industries’ demand and employment to business cycle movements. The

remaining industries (personal services, business services, and wholesale) are classified as “Others”

as they include companies linked to both defensive and cyclical activities (see Table A1 for our

classification of each industry).

3.2 State variables

There is no definite empirical measure established as state variable linked to the shifts in the future

investment opportunity set. We thus investigate potential candidate risk proxies through long-term

bond returns and innovations in macroeconomic variables. The choice of a long-term bond portfolio

is supported by both theoretical and empirical papers in the literature (e.g., Merton, 1973; Chen,

Roll, and Ross, 1986; Scruggs and Glabadanidis, 2003; Gerard and Wu, 2006). We use returns on

US Treasury Bonds with 10-year maturities (labeled as Bond), which we collect from CRSP at the

daily frequency and linearly compound to the weekly frequency. Innovations to macroeconomic

variables are also commonly used in empirical asset pricing to proxy for intertemporal risk as

drivers of hedging demands, since these variables directly impact the cost of capital, cash-flows and

investment opportunities of firms (see for instance, Campbell and Vuolteenaho, 2004; Hahn and Lee,

2006; Petkova, 2006; Bali and Engle, 2010). Accordingly, we test the following set of macroeconomic

variables, which we obtain from the Federal Reserve Bank of St. Louis data library: innovations

in Term Spread (the difference between yields on 10-year Treasury bond and 1-year Treasury bill,

labeled as ∆TS), innovations in Default Premium (the difference between yields on Moody’s BAA-

rated and AAA-rated corporate bonds, labeled as ∆DP), and innovations in the Effective Federal

Fund rate (labeled as ∆EFFR).11 Since these variables are highly persistent, their changes are

close to estimated surprises. Summary statistics of the risk factors are provided in Table 1.

Unconditionally, the long-term bond or the macroeconomic variables we study do not robustly

predict the market portfolio returns (Maio and Santa-Clara, 2012). However, period-by-period

11Merton (1973) initially suggests bonds and interest rates as potential state variables but lists other potential
candidates for the intertemporal risk factor, such as shifts in the wage-rental ratio, and inflation. However, there is
no reliable data for these variables with weekly frequency.
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analysis suggests that such a relationship exists in the data, at least in certain episodes. Figure 1

visualizes these results, where we plot the slope coefficients for the state variables from mov-

ing window predictive regressions of three-years-ahead market portfolio returns.12 In the context

of ICAPM models, as a result of investors’ hedging demands, if a state variable forecasts positive

future market returns, its innovation should earn a positive risk price in the cross-section. The plots

indicate that the sign of the relationship between the state variables and future market portfolio

returns changes over our time sample, which we will take into consideration for the interpretation

of our unconditional tests. At the same time, we do observe sub-periods of statistically significant

predictability for the Bond returns and for the innovations in Term Spread and in Default Premium.

For the market portfolio, we use the value-weighted NYSE/ AMEX/ NASDAQ index from

CRSP. For the risk-free rate, we use the one-month T-bill rate, sampled at the weekly frequency,

obtained from Kenneth French’s online data library.

[Place Figure 1 about here]

3.3 Conditioning (Information) Variables

For conditioning information for the prices of risk, we use the information from two types of variables

that we lag and demean in estimation. These have the support of the predictability literature (see

among others: Fama and Schwert, 1977; Keim and Stambaugh, 1986; Campbell and Shiller, 1988;

Fama and French, 1989). We use macroeconomic-related variables such as Default Premium (DP),

Term Spread (TS), and short-term interest rates (T-bill). We also use financial market variables,

such as the excess US market dividend yield (DY), the TED spread (TED), and the VIXO Index

(VIXO). We obtain them from the Federal Reserve Bank of St. Louis data library at the daily

frequency and use their values on Fridays (or the last values per week in case of a statuary holiday)

to convert them to the weekly frequency.13

12The choice of three years is motivated by the evidence in Maio and Santa-Clara (2012). However, our conclusions
also hold for other horizons such as 1, 2, 5, 7, and 10 years ahead. The results are available from authors upon request.

13DY is calculated from the difference between the previous year’s annualized market returns including distributions
and the one excluding distributions, divided by the value of the index excluding distributions.
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3.4 Firm Characteristics

We collect 69 industry characteristics from the WRDS Industry Financial Ratio (WIFR) dataset

which are aggregated from firm-level financial variables. At each period, we choose to study median

firm values in each industry to limit the effect of outliers. We also calculate four industry return

characteristics from their daily returns. They are all grouped into nine categories, following WIFR

grouping: (1) Return, which measures the financial performance of firms’ stocks, (2) Valuation,

which estimates the attractiveness of a firm’s stock, (3) Profitability, which measures the ability of

a firm to generate profit, (4) Efficiency, which captures the effectiveness of firm’s usage of assets

and liability, (5) Financial Soundness, which measures the operation health of the company, (6)

Capitalization, which measures the debt component of a firm’s total capital structure, (7) Solvency,

which captures the firm’s ability to meet its long-term obligations, (8) Liquidity, measures a firm’s

ability to meet its short-term obligations, and (9) Other, which are miscellaneous ratios and do not

fall in the above groups. Previous research analyzing equity returns finds predictive ability for many

of these characteristics (for example, Soliman, 2008; Ball et al., 2016; Medhat and Schmeling, 2022).

In the analysis of Section 5.2, we take the one-period lag values of the industry characteristics. See

Tables A2 and A3 for more description.

4 The Prices of Risk Through Time

We start our analysis with a trailing window estimation of the constant price of risk model. Fig-

ure A1 plots the year-by-year price of market risk obtained from a specification of the ICAPM

which assumes that γj = 0, ∀ j.14 The NBER recession periods are marked by gray bars on the

plot. The choice of a one-year window is motivated by the average duration of the recessions in our

sample (39 weeks per recession), thus we believe we can broadly capture differences in economic

conditions within our estimation window. Visual inspection of the yearly estimated prices confirms

previously reported evidence that (a) the price of risk is time-varying, and (b) the price of market

risk increases during the recession periods. To better understand what drives these temporal pat-

terns, we turn to the ICAPM specifications where the time variation in the compensation for risk

14Appendix B table A5 presents the results of the constant price of risk models for the ICAPM under different
specifications. For the price of market risk it documents comparable estimates to those reported in previous research.
The plotted coefficient is the one of specification (1) that only includes market risk.
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is related to conditioning variables linked to fluctuations in the economic and financial cycles.15

4.1 Conditional Price of Risk

The NBER recession and expansion periods are identified ex-post based on various economic in-

dicators, which are not available to investors ex-ante. Therefore, they are not informative for

decision-makers in the stock market. Instead, we analyze the price of risk, directly conditional on

the lagged values of economic and financial variables, estimating Equation (2) with one IVt at a

time. Table 2 presents the results. Given that our information variables are demeaned, in this

table, the constant (Level) coefficient represents the marginal effect for the conditional risk when

the IVt = 0, i.e., when the economy is most likely not at a peak or a trough of the cycle. In other

words, it is pointing to risk that matters in normal economic conditions. The plots of the values

for the information variables in Figure A2 over the time sample, with the NBER recession periods

marked by a gray bar, are a reminder that the “normal” corresponds to the mid-cycle. The slope

(Interaction) coefficient instead captures the variation in the price of a risk factor through highs

and lows in the cycle.

In Panel A of table 2 we observe that the Level coefficient for the price of market risk is positive

and highly significant across all six conditioning variables. The evidence is quite robust, with the

magnitude in line with what we find in Table A5. The Interaction coefficient on the DY is positive

and significant, suggesting that the price of market risk is increasing in the aggregate dividend

yield. A higher dividend yield is mostly present in recessions when stock prices are relatively low

and dividend payouts are less volatile.

The evidence on the significance and variation of the potential proxies for intertemporal risk

is an improvement on the results of the constant price models of Table A5. The sign of the level

coefficients is consistent with the one estimated in the latter table. Additionally, in table 2 we

find statistical significance for the long-term Bond (Panel B) and for the innovation in the Default

Premium (Panel D). Except in two cases, the level coefficient for these risk proxies is either strongly

or marginally significant, thus we find support for the importance of at least one additional risk

factor, even under normal economic conditions. The evidence on time-variation for intertemporal

15The moving window approach is sensitive to the choice of the estimation window and suffers from low power,
besides the shortcomings in characterizing the dynamics in real-time.
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risk is even stronger than for market risk in two of the proposed proxies and similar to the market

for another one. A few conditioning variables (TS, TED, and VIXO) are positive and significantly

related to the Default Premium risk while the DY is negative and highly significant, for both

the Default Premium and long-term Bond risk factors. For the Term Spread risk, time variation is

highly supported through the conditional relationship with the DY, T-Bill, DP, and VIXO variables.

Overall across all types of risks, the DY is a statistically strong conditioning variable, reflecting its

previously documented importance as a reliable stock market predictor. In our tests, we show that

its power extends also to other sources of risk. The only state risk proxy with no statistical support

is the innovations in the Effective Federal Fund Rate. It is plausible that this insignificant result

is related to the unique monetary regime in the period we study. Almost half of our sample time

corresponds to the period of near-zero interest rates from the 2008 financial crisis to the COVID-19

crisis and there is possibly little information to capture in the estimation.

[Place Table 2 about here]

To go beyond what can be learned through the tables of coefficients, we turn to an illustration

of the risk-return tradeoff. Figure 2, panel (a) and (b) for the price of the market and of one

intertemporal proxy, and Figures A3 - A5 for the remaining ones, depict the marginal effect of risk

on expected returns, conditional on the information variables. In each plot, the y-axis shows the

estimated price of risk based on the distribution of the conditional variable on the x-axis. The plots

also report the 95 percent conditional confidence intervals to help in assessing the values for which

the association is statistically significant. We can thus shed light on the changes in the price of risk

through values of a single conditional variable that corresponds to different economic and financial

conditions.

The plots in Figure 2a illustrate the variation of the price of market risk from the estimates

tabulated in Panel A, Table 2, and show this price as positive and significant for normal economic

conditions. Moreover, the conditioning intervals for the coefficients never encompass zero over

the range of the conditional variables. A very interesting pattern is illustrated for the price of

intertemporal risk in Figure 2b and in Figure A3 through A5, obtained from the coefficients in

Panel B through E of Table 2. Across these plots, we mostly find significance over the more extreme

conditioning values, which likely coincide to the troughs of recessions, the peaks of expansions, and
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periods of financial stress. These are meaningful values because they relate to very important

points of the economic and financial cycle, while we find that the constant, which corresponds to

average/neutral conditions, is often not significant.

More specifically, the intertemporal risk, as proxied by the long-term Bond returns and the

changes in Default Premium, is significant when the DY is below its historical average value.

However, as the DY increases, as it happens during the recession periods, the economic as well as

statistical importance for the risk factors decreases. The opposite trend is observed for the Term

Spread risk, where the DY only matters to the extent that it modifies the relationship above its

average, thus for values that are observed increasingly in bad times. Similarly, from the plots

for the Default Premium risk in Figure 2b conditional on TS, and for the Term Spread risk in

Figure A4 conditional on DP, we observe that the compensation for intertemporal risk is low in

expansion and increasing in values of the conditioning variables above their average which are highly

associated with recessions. Analyzing the results for the financial variables, we find that the Term

Spread and Default Premium risk factors are significant and are associated with an increasing price

when conditional on large values of the VIX index, which occur during financial markets turmoil.

Default Premium risk is also significant conditional on large values of the TED spread, which

are recorded at times of funding problems, thus also in this case, an indication of economic and

financial stress. Finally, the conditioning information from the T-Bill is only significant as a driver

of the Term Spread risk. We observe that its price is becoming more negative in good times for

above-the-average values of the short-term interest rate that are mostly associated with expansions.

Putting together this evidence with the previous discussion on Figure A4, we can infer that the

compensation for intertemporal risk as proxied by the changes in Term Spread is not required in

normal states of the economy. As for the evidence of Panel E Table 2, Figure A5 shows that the

innovations in the Effective Federal Fund Rate used with a single conditioning variable is not an

effective proxy for intertemporal risk.

Across the plots, we also mark with a dotted line the magnitude of the conditional price to

help the reader assess the difference between the estimated prices in good and bad times. In the

vast majority of cases, the difference is statistically significant. We conclude that the systematic

variation between the extreme values of the conditioning variables overall provides power to reject

the null hypothesis for the significance of the risk factors, which we are not able to achieve in the
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constant price model of Table A5. This kind of pattern can be an explanation as to why it has been

challenging to uncover intertemporal risk with the help of different proposed proxies while relying

on tests of unconditional asset pricing models.

[Place Figure 2 about here]

4.2 Time-varying Price of Risk

Motivated by the evidence in Section 4.1, we proceed to estimate the time-varying prices of risk,

pooling all information variables in the same regression, rather than one IVt at a time. We present

the summary of the test results in Table 3 and refer readers to Appendix Table A6 for the individual

estimated slope coefficients and their associated standard errors.

In Table 3 the results for all risk prices are organized in the same order. For example, the

first Wald test, H0 : λt = const., is for the joint significance of the coefficients for the price

of market risk, excluding the intercept. Given that our information variables are demeaned in

these estimations, this hypothesis tests for the time-variation of the price of market risk, when the

information variables are away from the zero value, thus for highs and lows of the economy. The

second test, H0 : λt = 0, is for the joint significance of all the coefficients of the price specification

including the constant, and thus it establishes evidence that the price of market risk is significant

in all states of the economic cycle. Lastly, through the third test, H0 : λt = λ̂, we check if the mean

of the time-varying prices of risk is equal to the estimate from the constant price model, tabulated

in Table A5, column (1) through (5) respectively. This further sheds light on the dynamic patterns

of these prices of risk.

The reported p-values for the joint Wald tests are suggestive of priced risk factors since they

all strongly reject the null. The risk-return relationship is significant at any significance level not

only for market covariance risk but also for the additional intertemporal risk proxies. With these

unconditional tests of a conditional relationship, we find evidence of time variation through the full

dynamics of the cycles when combining the information from the multiple variables. We also find

that the mean of the estimated time-varying prices of Term Spread, Default Premium, and Effective

Federal Fund Rate risk are significantly different from their constant price of risk estimates, which

again highlights the challenges in uncovering intertemporal risk with tests unconditional models. On
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the other hand, we fail to reject the third null hypothesis for the λt, an indication that accounting

for time-varying conditional information is not crucial to finding support for market risk.

[Place Table 3 about here]

We provide more insights on the time-variation of these prices through changing economic

conditions in Table 4 Panel A. All the prices of risk have a positive average value over the entire time

sample with the exception of the one for the changes in Term Spread, which is the only proxy with

positive unconditional correlation and conditional covariances in expansion periods (see respectively

Table 1 and A1). We also provide a two-tailed test of equality between the expansion and recession

means. While the evidence on the statistical difference for the market price is not robust across the

different model specifications, it is very strong for the intertemporal risk, regardless of the proxy

and the specifications. The results of these equality tests are consistent with the insights provided

by Figure 2 and A3 - A5 on the importance of differentiating between highs and lows of the cycle

to empirically capture changes in future investment opportunities. In Panel B, we present the slope

coefficient for the trend in these time-varying prices during the NBER recession periods.16 We

observe that the price for the market, Term Spread, and EFFR risk factors are increasing during

recessions, while we document a downward trend for the price of the Bond and Default Premium

risk factors. Only in the specification with changes in the Default premium, the market has a small

negative trend.17

[Place Table 4 about here]

To visually evaluate these patterns, we turn to the plots of the time-varying prices of risk

with their conditional confidence intervals in Figure 3, where we provide precise inference on the

dynamic behavior of the prices of risk in the common time domain. Here we combine the estimation

uncertainty of the regression coefficients with the variability of the information variable at each

16More specifically, we estimate regressions of time trend interacted with an NBER recession dummy. For example,
for the price of market risk, we run the following regression and report the slope coefficient b1 multiplied by 52:

λt = b0 + b1 t× 1Rec. + rj + ut,

where 1Rec. is a dummy variable that takes the value of one if week t falls in the NBER recession periods, rj are
individual NBER recession fixed effects, and ut is the error term.

17Once we take care of high-frequency dynamics with an HP filter, all the estimated trend coefficients for the
market are positive.

19



period, expanding the computation from Equation (2) to additional conditioning variables. The

information that we gather from this analysis thus complements the insights from Figure 2a (and

A3 - A5) where instead we plot the estimated prices over the range of values in the information

variables. Conditioning on multiple time-varying variables enhances the counter-cyclical dynamics

for the market risk as shown in Figure 3, top plot. As the economy moves through a recession, which

is marked by a gray bar, the required risk compensation is increasing, and it remains statistically

significant in most of those recession weeks. In Figure 3 bottom plots, we observe that the prices

for the proxy risk factors have both positive and negative values. Except for the Term Spread

risk, the prices are positive and significant in the majority of the expansion weeks, while not

significant when negative. Coupled with the negative covariation between the assets and the state

proxies that we observe in Appendix Table A4, this finding points to a negative component in

total risk premia. It is also consistent with the notion that during expansions, those industries

with larger negative covariation are better positioned to help investors offset uncertainty linked to

the future path of the economy. Many assets’ covariations with the changes in Term Spread are

instead positive, while its price is at times negative, also implying a negative component in the

total risk premia. Taking the evidence across the candidate state proxies together, our finding on

the sign of the intertemporal risk premia suggests that through these postulated factors we are

able to capture a hedging component that is distinct from the required reward for market risk.

Furthermore the evidence strongly indicates that the variation through the highs and lows in the

economic and financial cycle provided by the conditioning information is a key aspect in capturing

such components.

[Place Figure 3 about here]

5 Determinants of Risk Premia

To better understand risk dynamics through the economic and financial cycles and across industries,

we explore in this section the drivers of the risk premia, implied from the prices estimated in

Section 4. Scrutinizing the implied risk premia and analyzing the cross-section of test assets with

varying sensitivity to the cycles allow us to evaluate the importance of the intertemporal risk for
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investors. To this aim, first, we study the factor contribution for each source of risk, as defined in

Equation (5). This helps us gauge the relative importance of each risk factor in explaining the risk

premia. Next, we dig further through firm characteristics and explore the determinants of the risk

premia using SHAP values, as defined in Equation (7). We use the risk premia estimated from the

prices of risk in Specification (6), which pools all the macroeconomic risk factors.18

5.1 Risk Factor Contribution

Table 5 reports the contribution of each risk factor to the portfolios’ risk premia through the

business cycle and over the industry groupings. In Panel A, we find that the market risk explains

about 55% of the total risk premia throughout the sample.19 The intertemporal share is thus

substantial, accounting for almost half of the risk premia, with the changes in Default Premium the

most relevant of the three factors. When focusing on differences across recessions and expansions,

the magnitudes are very close. However, in statistical terms, they matter. The test of means rejects

the null of equality across the periods for all risk factors, documenting a non-linear relationship

between risk and reward through the business cycle. For the market and two of the intertemporal

risks, the trend dynamics corresponding to the NBER recessions are statistically significant. Market

risk premia are increasing in downturns, consistent with countercyclical patterns in the aggregate

and also highlighted in Panel B, Table 4. Intertemporal risk is instead decreasing, suggesting that

the offered discount from holding at least some assets seen as safe is not quite as important in bad

times.

Evaluating the relative importance of each risk factor for industry groupings delivers additional

insights. In Panel B, the share of market risk is larger for Cyclical industries while the one for

intertemporal risk is larger for Defensive industries, and this difference is statistically significant

for two of the three proxies. This aligns with the view that firms in the Defensive sectors are better

positioned to help investors capture changes in investment opportunities. Putting this evidence

together with the one from Panel A helps explain why for example firms in Defensive industries,

such as Food or Healthcare tend to outperform their counterparts during the recession periods (see

Table 1).

18The results for the other specifications are qualitatively comparable and are available upon request.
19Note that by construction, the sign of the factor risk premia is masked in this statistic. As a result, in the

presence of negative prices or of measures of risk, this statistic can be larger than 1 for the rest of the risk factors.
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[Place Table 5 about here]

5.2 Industry Characteristics and Risk Premia

Table 5 documents significant variations in sensitivity to risk factors in the cross-section of assets

and through time. The extent of these diverse risk exposures is likely influenced by disparities

in industry-specific characteristics. Thus, in this section, we exploit the information content of a

large set of characteristics that are closely monitored by investors as informative signals of firms’

economic and financial conditions in different states of the economy. Some of these have been

studied in the asset pricing literature to identify the important drivers of the risk premia and

have been shown to be informative about firms’ fundamental values and changes in their stock

prices. For example, Chen and Zhang (2007) show that variables such as earnings yield, capital

investment, and changes in profitability and growth opportunities, have predictive power for future

stock returns. Medhat and Schmeling (2022) document that double sorting on the previous month’s

return and share turnover reveals short-term reversal among low-turnover stocks. Papers such as

Campbell and Shiller (2001) report that price-earnings and dividend-price ratios appear to be useful

in forecasting future stock price changes. Ball et al. (2016) document that expected returns increase

in cash-based operating profitability, which even subsumes accruals in predicting the cross-section of

average returns. Soliman’s (2008) results suggest that investors react to changes in asset turnover.

Bhandari (1988) finds that the expected common stock returns are positively related to the ratio

of debt to equity.

Due to dimensionality, multicollinearity, and nonlinearity among the 73 characteristics, we

exploit recent developments in the field of high-dimensional machine learning methods to select the

best-performing technique in predicting the cross-section of industry risk premia. In the next step,

exploiting the SHAP values implied by the adopted technique, we can identify the attribution of

each industry characteristic to the compensation of risk through the cycle and across sectors.

Building on Gu et al. (2020), Bali, Beckmeyer, Mörke, and Weigert (2023), and Leippold et al.

(2022), we stay agnostic on the choice of the structural relationship between the dependent vari-

able (i.e., the asset estimated risk premia, labeled y) and the explanatory variables (i.e., the asset

characteristics, labeled X). Instead, we select the one with the highest predictive performance
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in our sample. We apply several widely-used machine learning techniques, including linear regres-

sions with dimension reduction (least absolute shrinkage and selection operator, Ridge, Elastic Net,

principal component analysis, and partial least squares regressions), decision trees (random forest

regressions, gradient boosted regression trees, and extreme gradient boosting (XGBoost) methods),

and neural networks (feed-forward neural network called Multi-layer Perceptron).20,21 These are

carefully picked with the purpose of reducing the dimensionality concerns in our feature set, which

includes several highly correlated variables.22 In addition, some of these models allow us to incor-

porate a nonlinear relationship between the industry characteristics and risk premia, which might

be observed as a result of cyclicality.

Table 6 tabulates the results of the horserace among these techniques. First, we observe that the

in-sample and out-of-sample R-squared metrics for most models are comparable, suggesting that the

regularization terms in our implementations successfully prevent overfitting in these estimations.

From the results in Table 6 we find that linear models tend to perform poorly both in-sample and

out-of-sample. Their out-of-sample R-squared ranges from 0.113 to 0.136. The underperformance

of the linear models is consistent with the findings in Table 3 where we show that the price of

risk changes significantly, perhaps nonlinearly, through the cycles. The neural network operator

performs much better than the linear models but not as well as the decision tree ones. This is not

surprising because, by design, neural network operators with multiple layers involve estimating a

significantly larger number of model parameters. Therefore, these models tend to perform better

when fitting a much larger training set. On the other hand, with short to medium time series, as

our sample, previous research finds support for decision trees (see, for example, Gu et al., 2020

studying stock-level and Akbari et al., 2021 studying country portfolios). Table 6 confirms these

findings in our data, where we find that the XGBoost model performs the best. This technique

generated the largest coefficient of determination, with an in-sample R-squared of 0.761 and a

predictive R-squared of 0.539. It also results in the lowest forecast errors, as measured by the mean

20Recently, Feng, Giglio, and Xiu (2020) and Freyberger et al. (2020), using a modified LASSO operator, and
Kozak et al. (2020), using a Bayesian principal components estimator, identify the relevant risk determinants for
the cross-section of stock returns in a high-dimensional setting. Bali et al. (2023) argue that one can improve the
prediction quality of these techniques by combining the predicted values of several models. The latter approach,
unfortunately, reduces the explainability of the estimations.

21Please refer to Appendix D for a detailed description of our implementation and choices of hyperparameters for
each of these models.

22See Figure A6 for a heatmap diagram of their cross-correlation in our sample.
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absolute prediction error and the root mean squared prediction error metrics.

[Place Table 6 about here]

For the previous exercise, we focus on estimated expected returns, rather than realized returns

that are contaminated by noise. This requires that we take a stand on a parametric model. When

we compare the results of a similar experiment performed on realized industry returns, we find

much smaller in-sample R-squared for all models and much weaker performance out-of-sample.23

That said, we also observe that the XGBoost model outperforms the other machine learning models

in predicting realized returns with an in-sample R-squared of 0.203. See Table A7.

Having identified the best model in explaining the risk premia, we calculate the SHAP values

to attribute the prediction outcome to the different features. The higher the SHAP values of a

feature, the more important that feature is for predicting the dependent variable. As a descriptive

example, in Figure 4 we plot the top 10 features (i.e., those with the largest SHAP values) for the

Trading industry which includes brokers and investment services, on March 15, 2009 (an NBER

recession date) and on March 17, 2019 (an NBER expansion date). The graphs show how much

each feature increases (decreases) the predicted output of the model, noted as f(x) on top of the

graphs, from the näıve estimator that only relies on the mean of the sample, noted as E[y] on

the bottom of the graphs. In this example, Enterprise Value to EBITDA (evm), Market Value

of Equity to Net Cash Flow from Operating (pcf ), Interest as a fraction of average Total Debt

(int totdebt), and Payables Turnover (pay turn) change the predicted outcome the most on that

specific expansion date, whereas stock risk (indstd ret), Shiller’s Cyclically Adjusted P/E Ratio

(capei), Enterprise Value to EBITDA (evm), and Sales per dollar of Invested Capital (sale invcap)

are the most influential characteristics in driving the predicted outcome in the recession date.

[Place Figure 4 about here]

Similar to Section 5.1, we aggregate the absolute SHAP values for the categories over the

phases of the business cycle and over the cross-section of broad sector groupings. Table 7 presents

these statistics, and we refer readers to Appendix Tables A8, A9, and A10 for a more granular

23See Rapach et al. (2019) for industry return prediction using lagged industry returns from across the entire
economy, where authors also find that equity returns inherently contain a relatively small predictable component.
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presentation of the results across phases of the cycle, industries and characteristics. In Panel A we

report the sum of the SHAP values per characteristic category over time periods. Specifically, the

first row presents the mean absolute SHAP values over all industries and the whole period, which

suggests that throughout the time sample, the Valuation category is the most important driver of

risk premia with average aggregate SHAP values of 36.212. The asset pricing literature, mainly

using the portfolio sorting approach, also finds that the variables in this category have predictive

power for the cross-section of equity returns (see, for instance, Fama and French, 1992 and Campbell

and Shiller, 2001). In second and third place behind Valuation are the Financial Soundness and

Efficiency categories, with SHAP values of 17.455 and 14.068, respectively. These characteristics

have a measurable impact on a firm’s ability to meet its obligations and the effectiveness of the firm’s

usage of assets. Solvency and capitalization are ranked at the bottom, at 3.631 and 1.764. So in

all, the method provides a useful approach to meaningfully compare large amounts of information.

Analyzing SHAP values over expansion and over recession periods, in Panel A we observe

that the contribution of these features changes; a two-tail test of means rejects the null that the

averages of the SHAP values in each category are equal in the two subsamples, except for the

Financial Soundness categories. The coefficient on a time trend regression shows that in recessions

the importance of the Return category increases the most in magnitude. Among the features in

this category in Appendix Table A8, the stock risk (indstd ret) becomes the most important one,

with an increases of 135.53% from expansion periods. Research on loss aversion and downside risk

documents that investors care about losses differently from upside gains, and they have predictive

power for future asset returns. For instance, papers such as, Ang et al. (2006a), document a

downside risk premium in the cross-section of stock returns. More recently Bollerslev et al. (2022)

show that betas stemming from negative market and negative asset return covariation significantly

predict future returns. Panel A shows that the Valuation category is also increasing in importance

during bad times. In Table A8 SHAP values for Shiller’s Cyclically Adjusted P/E Ratio (capei)

and Sales per dollar of Invested Capital (sale invcap) grow by 140% (from 3.226 to 7.741) and 98%

(from 2.104 to 4.171), respectively in the recession periods.

Analyzing the relative importance rank, rather than the magnitude of the SHAP values, a

similar pattern is observed in Appendix Table A11: with the highest SHAP Values in all periods,

evm and pcf are ranked as top two characteristics on average across all industries. This suggests
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that the above valuation metrics are informative signals for investors irrespective of the overall

business conditions. They are indicative of firms’ future cash flows, which depend on the scale

of operations, with the level of capital investment affecting the scale of existing operations, and

changes in growth opportunities affecting expected future scale (Chen and Zhang, 2007). However,

in the NBER recession periods some features gain importance; noticeably, the rank for sale invcap,

capei, and indstd ret, on average, improves by 7, 6.5, and 5.0, respectively, with them taking the

spot of characteristics such as int debt among the top ten.

[Place Table 7 about here]

Next, we explore the feature attribution to the industries’ risk premia in Panel B, where we

distinguish the aggregated absolute SHAP values like in Panel A but across sector classification. We

observe a pattern across industry groups similar to Panel A, with Valuation and Financial Soundness

as the most important categories overall. Panel B further shows that the attribution of these

features differs across Defensive and Cyclical industries. In fact, we reject the null that the mean of

SHAP values is equal for all feature categories within these industry groupings. Interestingly, the

average SHAP values for the Sensitive industry group, which includes industries that we classified

as neither Cyclical nor Defensive, are between those of the Cyclical and Defensive groups.

Differently from the Cyclical industries, for firms in the Defensive sectors, Return features

are ranked third and more important than Efficiency features, with mean absolute SHAP values of

13.000 and 12.285 versus 9.547 and 11.351. The SHAP values for firms in the Cyclical and Defensive

sectors vary the most across the Return and Valuation categories; with respect to Return, values

are 3.452 point estimates larger for the Defensive sector while with respect to Valuation, they are

2.682 point estimates larger for the Cyclical one. In fact, the difference between any two sectors

in any feature category SHAP values is smaller than the values above. Given that the Defensive

industries are a hedge for investors during recessions, it is interesting to see in Appendix Tables A8,

A9, and A10 that stock risk (indstd ret), in addition to size (indsize) and payables turnover ratio

(pay turn) are the more important features for these firms, as compared to the Cyclical industries.24

Conversely, among the valuation ratios, Enterprise Value to EBITDA (evm) and Market Value of

24Freyberger et al. (2020) using a modified LASSO methodology also find that Return category variables, such as
size, volatility, and past returns, have incremental explanatory power for expected stock returns.
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Equity to Net Cash Flow from Operating (pcf ), in addition to Interest as a fraction of average

Total Debt (int totdebt) are the important ones for Cyclical firms which have larger profit swings

through the business cycle.

It is worth noting that some characteristics are more important for some industries. For instance,

stdev return is ranked among the top three most important ones for firms in the mining sector,

such as Petroleum and Natural Gas, Coal, Non-Metallic and Industrial Metal Mining, Precious

Metals, Steel Works. However, it is not in the top ten for the Utilities, Wholesale, Food Products,

Consumer Goods, or Healthcare firms. pay turn, on the other hand, is consistently ranked among

the top three most important characteristics for the majority of industries, except for the finance-

related ones, and Banking, for which it is ranked 50. Similarly, int totdebt is considered important

for all but the Medical Equipment and Pharmaceutical Products firms, for which it is ranked 25.

In sum, our results suggest that a limited set of a large number of characteristics conveys the

most relevant signals for the cross-section of industries and throughout the economic and financial

cycles. The predictive nature of our results complements and expands research on the traditional

sector rotation strategies based on macroeconomic variables (e.g., Rapach, Strauss, and Zhou, 2010,

and Zhu, Yi, and Chen, 2020). Investors can rely on the proposed techniques to sort and narrow

down independent information, which can be exploited for asset rebalancing strategies.

6 Conclusion

We investigate within the framework of an intertemporal asset pricing model the time-variation in

the prices of risk in relation to the economic and financial cycles. Our specification accounts for

sources of risk through state variables in a conditional setting, where the prices of risk factors vary

with the information set of investors. We then analyze, with advanced machine-learning techniques,

the determinants of these prices and of the resulting asset risk premia to provide investors with

valuable insights for sector rotation strategies.

The evidence strongly indicates that information on the variation through the highs and lows of

the cycles is a key aspect in capturing the statistical significance of the intertemporal components.

Conversely, conditioning information is not crucial to finding support for market risk. In fact, while

the price of market risk is positive and significant throughout, time-variation in intertemporal risk
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is statistically significant only at some stages of the cycles, mostly over troughs of recessions, peaks

of expansions, and periods of financial stress. For example, the price of the default premium risk

is significant during an economic downturn, when it decreases, and during tight funding conditions

or high market uncertainty, when it increases.

Taking into consideration that most of the intertemporal risk proxies have negative covariances

with the assets, the evidence overall suggests that the risk prices consistently generate a negative

component in their risk premia. We show that the contribution of intertemporal risk is substantial,

accounting overall for almost half of the total risk premia, with the innovations in Default Premium

the most relevant. The share of market risk increases while that of intertemporal risk decreases

during recessions. In the cross-section, market risk contributes more to the Cyclical industries’

risk premia, whose sales are more heavily affected in bad times. Conversely, the intertemporal risk

factors such as innovations in Term Spread or in Default Premium contribute relatively more to

the risk premia of the firms in the Defensive sectors. The latter tend to outperform during the

recession periods and provide a hedge to investors, which can explain why the intertemporal risk

factors are relatively more important, yet smaller in recessions.

Further investigation through Machine Learning methods reveals that firm characteristics have a

different association with the model-implied expected returns of the Cyclical and Defensive sectors.

For instance, among the characteristics, the Valuation and Financial Soundness categories are

relatively more important based on SHAP values for firms in the Cyclical industries, which have

larger profit swings through the business cycle. The Return and Efficiency categories are instead

more predominant for the Defensive industries. In bad times, Return and Valuation matter the most

across both groups. In sum, our results suggest that a limited number out of the 73 characteristics

conveys the most informative signals for the cross-section of industries and throughout the business

cycle. Investors can exploit them for asset rebalancing strategies, conditional on the economic and

financial environment.
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Figure 1. Each panel of the plot shows the slope coefficients for the state variables in moving-
window predictive regressions of three years ahead OF market portfolio returns. The state variables
are proxied by the long-term bond’s cumulative returns, Term Spread, Default Premium, and Effec-
tive Federal Fund Rate. The dotted red lines show the 95% conditional confidence intervals, which
are estimated using Newey-West standard errors. The shaded areas depict the NBER recession
periods. The sample period is from January 1986 to December 2022 at the weekly frequency, and
regression windows are one year.
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(a) Market risk (b) Default Premium risk

Figure 2. The figure plots the price of market risk, estimated from a specification of ICAPM which assumes that γj = 0, ∀ j, (shown
in Panel a), and the price of Default Premium risk, (shown in Panel b) estimated from a specification of ICAPM which assumes that
γ∆DP ̸= 0, conditional on one information variable. The Default Premium risk is estimated from the covariation of asset returns with
the innovations in the Default Premium. Each panel represents the results using the lagged and demeaned values of the US market
dividend yield (DY), term spread (TS), the short-term interest rate (T-Bill), Default Premium (DP), TED spread (TED), and the VIX
Index (VIXO) as the information variable. The 95% conditional confidence intervals are estimated using GLS standard errors corrected
for heteroskedasticity, autocorrelation, and cross-correlations of assets. The dotted lines show the maximum and minimum values of the
estimated prices of risk. The sample period is from January 1986 to December 2022 at the weekly frequency.
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Figure 3. The top plot shows the time-varying price of market risk, estimated from a specification of the ICAPM
which assumes that γj = 0, ∀ j, conditional on all information variables. Each panel of the bottom plot shows the
time-varying price of intertemporal risk, as proxied by the long-term bond return, innovations in the Term Spread,
innovations in the Default Premium, and innovations in the Effective Federal Fund Rate. These are estimated from
a specification of ICAPM which assumes that γ∆Bond ̸= 0, γ∆TS ̸= 0, γ∆DP ̸= 0, and γ∆EFFR ̸= 0, respectively,
conditional on all information variables. The dotted red lines show the 95% conditional confidence intervals, which
are estimated using GLS standard errors corrected for heteroskedasticity, autocorrelation, and cross-correlations of
assets. The shaded areas depict the NBER recession periods. The sample period is from January 1986 to December
2022 at the weekly frequency.
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(a) March 15, 2009

y

(b) March 17, 2019

Figure 4. The figure plots the SHAP values of the top 10 features for the Trading industry’s risk premia on March 15, 2009, and March
17, 2019. E[y] denotes the mean of the asset risk premia in our sample, which are estimated from the ICAPM model with all the macro
state risk proxies, including the innovations in the Term Spread (∆TS), innovations in the Default Premium (∆DP), and innovations
in the Effective Federal Fund Rate (∆EFFR). f(x) denotes the outcome of the XGBoost model with all features on that date. SHAP
values are measured based on the output of the XGBoost model. For the sake of better readability, weekly SHAP values are multiplied
by 10,000.
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Table 1. The table reports summary statistics for the test assets, the state variables risk proxies
in the asset pricing models, and the information variables. Panel A reports average (Exp., Rec.),
and standard deviation (σExp., σRec.) values of the annualized weekly returns of the 49 Industry
portfolios, averaged per industry groups and over 1773 expansion and 157 recession weeks. It also
reports its correlations (ρ) with the state variables proxies, which include the market return, the
long-term bond return (Bond), innovations in the Term Spread (∆TS), innovations in the Default
Premium (∆DP), and innovations in the Effective Federal Fund Rate (∆EFFR). Panel B reports
the summary statistics for these state variables over the whole sample. Panel C provides the sum-
mary statistics over the whole sample on the US market dividend yield (DY), Term Spread (TS),
the short-term interest rate (T-Bill), Default Premium (DP), TED spread (TED), and the VIX In-
dex (VIXO) as conditioning information variables. In estimation we use their lagged and demeaned
values. The sample period is from January 1986 to December 2022 at the weekly frequency.

Panel A Exp. Rec. σExp. σRec. ρMarket ρBond ρ∆TS ρ∆DP ρ∆EFFR

Defensive 0.141 -0.028 1.479 2.421 0.572 -0.004 -0.029 -0.042 -0.022
Cyclical 0.153 -0.228 1.536 3.337 0.781 -0.119 0.054 -0.072 -0.051
Sensitive 0.155 -0.202 1.654 2.989 0.734 -0.139 0.064 -0.079 -0.040
Others 0.124 -0.239 1.343 2.593 0.829 -0.117 0.034 -0.070 -0.050

Panel B ALL σ Min Max ρMarket ρBond ρ∆TS ρ∆DP ρ∆EFFR

Market 0.114 1.237 -9.344 6.561
Bond 0.056 0.505 -2.052 4.364 -0.120
∆TS -0.001 0.100 -0.480 0.590 0.044 -0.560
∆DP 0.000 0.051 -0.390 0.720 -0.079 0.068 -0.047
∆EFFR -0.002 0.176 -1.290 1.690 -0.060 -0.057 -0.122 0.021

Panel C ALL σ Min Max ρDY ρTS ρT-Bill ρDP ρTED

DY 2.179 0.669 1.054 4.065
TS 1.359 1.023 -1.180 3.500 0.113
T-Bill 2.903 2.482 0.000 9.367 0.381 -0.505
DP 0.974 0.368 0.510 3.450 0.381 0.210 -0.191
TED 0.539 0.431 0.060 4.580 0.474 -0.221 0.527 0.335
VIXO 20.064 8.839 7.540 98.810 0.126 0.072 0.043 0.559 0.467
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Table 2. The table reports slope coefficients for the prices of risk from various ICAPM models,
conditional on one information variable at a time. Panel A reports the estimations for the price
of market risk, from a specification of ICAPM which assumes that γj = 0, ∀ j. Panels B to E
report the estimations for the prices of intertemporal risk from the ICAPM with the market and
one state risk proxy, such as the long-term bond return (Bond), innovations in the Term Spread
(∆TS), innovations in the Default Premium (∆DP), or innovations in the Effective Federal Fund
Rate (∆EFFR). Each column represents the regression results using one information variable,
which is the lagged and demeaned values of the US market dividend yield (DY), Term Spread
(TS), the short-term interest rate (T-Bill), Default Premium (DP), TED spread (TED), and the
VIX Index (VIXO). P-values are estimated using GLS standard errors (reported in parenthesis)
corrected for heteroskedasticity, autocorrelation, and cross-correlations of assets. ***, **, and *
denote statistical significance at the 1%, 5%, and 10% levels, respectively. The sample period is
from January 1986 to December 2022 at the weekly frequency.

DY TS T-Bill DP TED VIXO

Panel A: Market
Level 1.788*** 2.135*** 1.973*** 2.165*** 2.511*** 1.917***

(0.272) (0.244) (0.251) (0.310) (0.308) (0.424)
Interaction 0.744** -0.378 -0.117 -0.086 -0.364* 0.008

(0.300) (0.240) (0.105) (0.282) (0.202) (0.011)

Panel B: Bond
Level 4.912** 3.521* 4.329** 4.268** 4.703** 4.836**

(2.067) (1.876) (1.965) (2.015) (2.120) (2.217)
Interaction -5.614*** -0.630 0.455 -4.128 -0.158 -0.123

(2.175) (2.034) (0.769) (3.670) (2.335) (0.088)

Panel C: ∆TS
Level 0.001 -0.108 -0.246 -0.412* -0.194 -0.256

(0.194) (0.188) (0.199) (0.217) (0.202) (0.233)
Interaction 0.722*** 0.161 -0.181** 1.038*** 0.112 0.026***

(0.255) (0.186) (0.081) (0.239) (0.191) (0.009)

Panel D: ∆DP
Level 3.248*** 1.223*** 2.083*** 1.770*** -0.570 0.539

(0.566) (0.362) (0.429) (0.599) (0.532) (0.717)
Interaction -1.965*** 0.925** 0.041 0.013 1.674*** 0.031*

(0.589) (0.370) (0.179) (0.396) (0.320) (0.017)

Panel E: ∆EFFR
Level -0.159 0.043 0.101 0.200 0.183 0.124

(0.218) (0.182) (0.184) (0.204) (0.246) (0.296)
Interaction 0.303 0.307 -0.061 -0.523 -0.144 -0.003

(0.232) (0.218) (0.073) (0.320) (0.189) (0.007)
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Table 3. The table reports the p-values for the prices of risk from various ICAPM models,
conditional on all information variables. For each risk factor, we report the p-values of a Wald
test for the null hypothesis of zero prices of risk in the first row as well as for the null hypothesis
of constant prices of risk in the second row. We also report in the third row the p-values for a
two-tailed test of means of these time-varying prices of risk and their estimates from a constant
price of risk model specification, tabulated in Table A5. Column 1 reports these values for the
market model, which assumes that γj = 0, ∀ j. Columns 2 to 5 report them for the ICAPM
model with one state risk proxy, including the long-term bond return (Bond), innovations in the
Term Spread (∆TS), innovations in the Default Premium (∆DP), and innovations in the Effective
Federal Funds Rate (∆EFFR). Column 6 reports the p-value for the model that includes all
the macroeconomic risk proxies. P-values are estimated using GLS standard errors corrected for
heteroskedasticity, autocorrelation, and cross-correlations of assets. The sample period is from
January 1986 to December 2022 at the weekly frequency.

(1) (2) (3) (4) (5) (6)

H0 : λt = const. 0.000 0.001 0.000 0.011 0.000 0.017
H0 : λt = 0 0.000 0.000 0.000 0.000 0.000 0.000

H0 : λt = λ̂ 0.910 0.264 0.390 0.507 0.666 0.879

H0 : γBond,t = const. 0.014
H0 : γBond,t = 0 0.002
H0 : γBond,t = γ̂Bond 0.216

H0 : γ∆TS,t = const. 0.000 0.002
H0 : γ∆TS,t = 0 0.001 0.003
H0 : γ∆TS,t = γ̂∆TS 0.031 0.048

H0 : γ∆DP,t = const. 0.000 0.000
H0 : γ∆DP,t = 0 0.000 0.000
H0 : γ∆DP,t = γ̂∆DP 0.000 0.000

H0 : γ∆EFFR,t = const. 0.000 0.000
H0 : γ∆EFFR,t = 0 0.000 0.000
H0 : γ∆EFFR,t = ̂γ∆EFFR 0.000 0.000
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Table 4. The table reports the changes in the prices of risk during the business cycle. In Panel
A, we report the mean values over time (ALL) for each risk factor, estimated from various ICAPM
models conditional on all information variables. We also report the difference in these values during
the NBER recession and expansion periods (Rec. − Exp.), as well as the p-values for a two-tailed
test of means over these periods (H0 : Rec. = Exp.). In Panel B, we report the slope coefficients
from regressions of the prices of risk on a time trend interacted with an NBER recession dummy.
Column 1 reports these estimates for a specification of ICAPM which assumes that γj = 0, ∀ j.
Columns 2 to 5 report them for the ICAPMmodel with one state risk proxy, including the long-term
bond return (Bond), innovations in the Term Spread (∆TS), innovations in the Default Premium
(∆DP), and innovations in the Effective Federal Fund Rate (∆EFFR). Column 6 reports the p-
value for the model that includes all the macroeconomic risk proxies. P-values are estimated using
Newey-West standard errors. The sample period is from January 1986 to December 2022 at the
weekly frequency.

(1) (2) (3) (4) (5) (6)

Panel A: Average Level

λALL 2.130 2.513 1.868 2.893 2.222 2.741

λRec. − λExp. -0.102 -0.114 0.079 -0.292 -0.147 -0.195

H0 : λRec. = λExp. 0.441 0.285 0.597 0.000 0.276 0.005

γBond,ALL 5.762
γBond,Rec. − γBond,Exp. 2.053

H0 : γBond,Rec. = γBond,Exp. 0.029

γ∆TS,ALL -0.434 -0.403
γ∆TS,Rec. − γ∆TS,Exp. 0.426 0.406

H0 : γ∆TS,Rec. = γ∆TS,Exp. 0.000 0.000

γ∆DP,ALL 3.571 3.726
γ∆DP,Rec. − γ∆DP,Exp. -0.946 -1.123

H0 : γ∆DP,Rec. = γ∆DP,Exp. 0.036 0.011

γ∆EFFR,ALL 1.106 1.112
γ∆EFFR,Rec. − γ∆EFFR,Exp. -0.898 -0.656

H0 : γ∆EFFR,Rec. = γ∆EFFR,Exp. 0.000 0.000

Panel B: Growth Rate

λt : Rec. 0.234*** 0.210*** 0.354*** -0.048** 0.249*** 0.082***
γBond,t : Rec. -1.850***
γ∆TS,t : Rec. 0.330*** 0.311***
γ∆DP,t : Rec. -1.234*** -1.222***
γ∆EFFR,t : Rec. 0.024 0.124***
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Table 5. The table reports the contribution of each risk factor to the total asset risk premia. Panel
A presents the mean values of the sum of absolute factors’ contributions, over all industries and
time (ALL). It also reports the difference in these values during the NBER recession and expansion
periods (Rec.− Exp.), as well as the p-values for a two-tailed test of equality in means over these
periods (H0 : Rec. = Exp.). The panel also reports the slope coefficients from regressions of the
factor contributions of risk factors on a time trend interacted with an NBER recession dummy
(FC:Rec.). Panel B presents the mean values of the sum of absolute factors’ contributions over
the whole sample by industry groups: Defensive (Def.), Cyclical (Cycl.), Sensitive (Sens.) and
Others (Othr.). It also reports the difference in these values for Cyclical and Defensive industries
(Def. − Cycl.), as well as the p-values for a two-tailed test of equality in means over these groups
(H0 : Def. = Cycl.). The asset risk premia are estimated from the ICAPM model with all the
macro state risk proxies, including the innovations in the Term Spread (∆TS), innovations in the
Default Premium (∆DP), and innovations in the Effective Federal Fund Rate (∆EFFR). P-values
are estimated using Newey-West standard errors. The sample period is from January 1986 to
December 2022 at the weekly frequency.

Market ∆TS ∆DP ∆EFFR

Panel A: Business Cycle

ALL 0.552 0.095 0.235 0.118

Rec.− Exp. -0.015 -0.018 0.084 -0.050

H0 : Rec. = Exp. 0.000 0.000 0.000 0.000

FC:Rec. 1.968*** 0.762*** -2.644*** -0.087

Panel B: Industry Group

Def. 0.535 0.102 0.243 0.119

Cycl. 0.557 0.092 0.230 0.120

Sens. 0.551 0.094 0.236 0.119

Othr. 0.574 0.094 0.227 0.104

Def.− Cycl. -0.022 0.010 0.013 0.000

H0 : Def. = Cycl. 0.000 0.000 0.000 0.702

41



Table 6. The table reports the prediction performance metrics for ten machine learning techniques,
adopted to predict the risk premia for industry portfolios. These metrics are the coefficient of deter-
mination over the training set (R2

in) and test set (R2
POS), mean absolute prediction error (MAPE),

and root mean squared prediction error (RMSPE). MAPE and RMSPE values are multiplied by
100 for better readability. We consider six linear regressions with dimension reduction, includ-
ing ordinary least squares (LS), least absolute shrinkage and selection operator (LASSO), Ridge
(Ridge), elastic net (ElasticNet), principal component analysis in conjunction with least squares
(PCR), and partial least squares (PLS). We also consider three decision tree models, including
random forest regressions (RFR), gradient-boosted regression trees (GBRT), and extreme gradient
boosting (XGBoost) method. Lastly, we consider Multi-layer Perceptron (MLP) neural networks.
The sample period is from January 1986 to December 2022 at the weekly frequency.

R2
in R2

POS MAPE RMSPE

LS 0.188 0.136 0.162 0.312

LASSO 0.182 0.133 0.161 0.313

Ridge 0.188 0.136 0.162 0.312

ElasticNet 0.185 0.135 0.161 0.313

PLS. 0.173 0.122 0.163 0.315

PCR 0.163 0.113 0.164 0.317

RFR 0.567 0.403 0.127 0.260

GBRT 0.542 0.404 0.124 0.260

XGBoost 0.761 0.539 0.088 0.228

MLP 0.287 0.204 0.150 0.300
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Table 7. The table presents the aggregated SHAP values of feature contributions to the industries’ risk premia. Panel A presents the
means of the sum of absolute SHAP values, measured based on the output of the XGBoost model, per characteristics category, over all
industries and time (ALL). It also reports the difference in these values during the NBER recession and expansion periods ( Rec.−Exp.),
as well as the p-values for a two-tailed test of equality in means over these periods (H0 : Rec. = Exp.). Row SHAP:Rec. reports the
slope coefficients from regressions of these SHAP values on a time trend interacted with an NBER recession dummy. Panel B presents
the means over the sample period of the sum of absolute SHAP values per characteristics category over industry groups: Defensive
(Def.), Cyclical (Cycl.), Sensitive (Sens.) and Others (Othr.). It also reports the difference in these values for Cyclical and Defensive
(Def.−Cycl.) industries, as well as the p-values for a two-tailed test of equality in means over these groups (H0 : Def. = Cycl.). For the
sake of better readability, weekly SHAP values are multiplied by 10,000. P-values are estimated using New West standard errors. The
sample period is from January 1986 to December 2022 at the weekly frequency.

ΣReturn ΣValuation ΣProfitability ΣEfficiency ΣFinancial ΣCapitalization ΣSolvency ΣLiquidity ΣOther
Soundness

Panel A: Business Cycle

ALL 10.234 36.212 9.046 14.068 17.455 1.764 3.631 4.935 0.987

Rec.− Exp. 5.228 4.398 -0.106 1.384 -0.061 -0.109 -0.161 0.096 -0.062

H0 : Rec. = Exp. 0.000 0.000 0.000 0.000 0.187 0.000 0.000 0.000 0.000

SHAP:Rec. 1.542*** 1.298*** 0.078*** 0.445*** 0.232*** -0.046*** 0.018** 0.040*** 0.004**

Panel B: Industry

Def. 13.000 33.298 7.307 12.285 14.998 0.234 3.340 4.809 1.170

Cycl. 9.547 35.980 7.260 11.351 16.604 0.157 2.974 4.213 0.939

Sens. 9.842 35.522 7.316 11.729 15.823 0.206 3.195 3.987 0.966

Othr. 7.851 35.948 7.009 12.558 15.291 0.124 2.682 3.938 0.819

Def.− Cycl. 3.452 -2.682 0.047 0.934 -1.605 0.076 0.366 0.595 0.231

H0 : Def. = Cycl. 0.000 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.000
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Online Appendix

A Asymmetric Dynamic Conditional Correlation

For the estimation of the conditional second moments, we implement the Asymmetric Dynamic
Conditional Correlation (ADCC) specification proposed by Cappiello et al. (2006), where we allow
for a leverage effect in the variance dynamic through GJR-GARCH and asymmetry in correlation
(Longin and Solnik, 2001; Ang and Bekaert, 2002) to capture higher comovements in market down-
turns that are at times associated with recessions. ADCC enables us to capture the asymmetric
dynamics both in volatility and in correlations.25 Formally, we first take out any autoregressive
elements in the returns of each asset and filter them with a univariate asymmetric GARCH model
(Glosten, Jagannathan, and Runkle, 1993):

Rt = ϕ0 + ϕ1Ri,t−1 + ut,
σ2
t = ω + βσ2

t−1 + (α+ δI [ut−1 < 0]) u2t−1

ut ∼ N (0, st)
(A1)

Where, I (·) denotes the indicator function; ϕ0, ϕ1 are the autoregressive coefficients; ω, α, β are the
GARCH parameters; δ captures the “leverage effect”. In this setting, σ2

t denotes the conditional
variance of assets, derived by conditioning on the previous assets’ returns.

In the second step, we compute estimates of the bivariate conditional correlations between each
asset return and the market portfolio, with a scalar ADCC filter. Concatenate standardized return
of asset i and market portfolio to form matrix εt and set ρ = E[εtε

′
] the unconditional correlation

of asset pairs. Then the 2× 2 Matrix ρt below generates the conditional correlations between each
asset pair.

Qt =
(
ρ−a2ρ−b2ρ−g2N

)
+ a2εt−1ε

′
t−1 + g2nt−1n

′
t−1 + b2Qt−1

ρt = diag(Qt)
− 1

2 Qt diag(Qt)
− 1

2

nt = I [et < 0] . ∗ et

(A2)

where I (·) denotes the indicator function and .∗ denotes the Hadamard or element by element
matrix multiplication. A necessary and sufficient condition for Qt to be positive definite is that
a2+b2+δg2< 1, where δ = max(eigenvalue[ ρ−

1
2Nρ−

1
2 ].

As the assumption of conditional normality is often violated in stock returns, in both steps we use
the Quasi-Maximum Likelihood Estimator (QMLE) that is consistent and asymptotically normal.
For multivariate GARCH models, Bollerslev and Wooldridge (1992) show that this estimator is
consistent as long as the first two moment equations are correctly specified. After estimating the
conditional correlations, we compute the variance-covariance matrix of assets, DtρtDt, choosing
Dt as a diagonal matrix of conditional standard deviations with si,t and sm,t on the diagonal and
zeroes elsewhere.

The ADCC estimation results show supportive evidence in favor of asymmetric volatility and
asymmetric correlations, albeit with weaker statistical support for the latter, since the parameter for
correlation asymmetry, g, is only significant for half of the asset pairs. The estimated correlations
of industry portfolios with the market portfolio are indeed higher during recession periods when

25Volatility of a firm may increase after a negative shock due to effects like leverage effect or volatility feedback.
The leverage of a firm (debt-to-equity ratio) increases after a negative shock to the stock value. Thus, the volatility
of the whole firm, which is assumed to remain constant, must be reflected by an increase in volatility in the non-
leveraged part of the firm (equity). Similarly, correlations may increase following negative systematic shocks that
induce downward pressure on the returns of any pairs of stocks.
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most market downturns occur. The cross-sectional average of the conditional correlations is 0.72
in recessions and 0.68 in expansions. Summary statistics of the conditional covariances computed
from the ADCC filter between each industry index and the aggregate market, as well as the proxies
of intertemporal risk, are in Table A4. On average, assets show a larger covariance with the market
portfolio with an average of 5.51. Those with long-term bond returns, the innovations in the
Effective Federal Fund rate, and in the Default Premium are negative whereas the average of the
covariances with the innovations in the Term Spread is positive but substantially smaller than the
one with the market (0.80). Among all risk factors, the covariances of asset returns with the Term
Spread risk have the largest standard deviation at 6.72 and the covariances with the long-term
Bond risk have on average the lowest volatility. The covariances of the intertemporal risk factors
are also larger in absolute terms in recession periods, a finding that aligns with the evidence on
market covariances.

B Constant Price of Risk

To compare our results to previous research and to establish a benchmark for our time-varying
analysis, Table A5 reports results of the unconditional models for the ICAPM under different
specifications. The price of market risk is positive and significant, with point estimates in a range
between 2.081 to 2.714 among all models. These coefficients on the market risk-return tradeoff
are somewhat lower than the one reported in Bali (2008). However, we find that our estimates
would be in line with his magnitude when using a cross-section that excludes the market portfolio
as in that paper. When we proxy the intertemporal risk through the bond returns, we find a
positive price of risk that in our test is marginally significant, in contrast with the lack of statistical
evidence in Scruggs and Glabadanidis (2003) and Gerard and Wu (2006). When we proxy the
intertemporal risk using the innovations in the macro-variables one at a time, the evidence shows a
significant price for the Default Premium but not for the Effective Federal Fund Rate or the Term
Spread risk. Furthermore, the significance for the Default Premium survives when we consider all
the innovations in the same regression. Including the intertemporal factors does not change the
statistical significance of the market price of risk in all the ICAPM regressions.

C Interaction models and conditional variances

Filtering the price of risks with interaction models would involve estimating the system below,
assuming a one-factor asset pricing model:

Ri,t−rf,t=β0+β1covt−1 (Ri,t, rm,t)+β2 IVt−1+β3 IVt−1covt−1 (Ri,t, rm,t) + ϵi,t (A3)

In this setting, the conditional price of market risk,λt, is the derivative of the left-hand side
with respect to the regressand. Thus, we have:

λt =

(
∂Ri

∂cov

∣∣∣∣ IV )
= β1 + β3IV (A4)

var

(
∂Ri

∂cov

∣∣∣∣ IV )
= var (β1)+IV 2var (β3)+2IV cov (β1, β3) (A5)

Conditioning is done on a set of K information variables, IV= [IV 1, . . . ,IV K]. As a result, we
have β3= [β3,1, . . . ,β3,K]. So the extended version of the above formula becomes:

2



var

(
∂Ri

∂cov

∣∣∣∣ IV )
= var (β1)+IV 1cov (β1, β3,1)+ · · ·+IV Kcov (β1, β3,K)

+ IV 1cov (β3,1, β1)+IV 2
1var (β3,1)+ · · ·+IV 1IV Kcov (β3,1, β3,K)

+ . . .

+ IV Kcov (β3,K , β1)+IV KIV 1cov (β3,K, β3,1) · · ·+IV 2
Kvar (β3,K) (A6)

D Estimating the Machine Learning Techniques

We follow the approach of Gu et al. (2020), Bali et al. (2023), and Leippold et al. (2022), and
identify the structural relationship between the dependent and the explanatory variables based on
the predictive performance of a set of advanced estimation techniques. The structural relationship
f(.) is then inferred from this technique. More formally, we consider the following:

y = f{i,Θ}(X) + u (A7)

E [u|X] = 0, u ∼ iid

Where the dependent variable y is a vector of M × 1 observations of industry risk premia that
are implied from Equation (2) for N × T industry-week estimates. Our analysis covers 49 indus-
try portfolios over 1930 weeks, resulting in 94,570 industry-week observations. The explanatory
variables X (also referred to as features) is a matrix of M × K lagged industry characteristics,
with K = 73 (see Section 3 for the list of these variables). f{i,Θ} represents the machine learning
operator i, with learnable parameter set Θ. The number of parameters to be estimated depends on
the specifications of each operator. These parameters are chosen by minimizing the mean square
forecast error in the training set, using the regularization term, R(.), and hyperparameter, λ, which
is chosen using the validation set:

min
Θ

M∑
m=1

(
ym − f{i,Θ} (Xm)

)2
− λ R

(
f{i,Θ}

)
(A8)

More specifically, we consider the following ten commonly used machine learning techniques: or-
dinary least squares (LS), least absolute shrinkage and selection operator (LASSO), Ridge (Ridge),
elastic net (ElasticNet), principal component analysis in conjunction with least squares (PCR),
and partial least squares (PLS). We also consider three decision tree models, including random for-
est regressions (RFR), gradient-boosted regression trees (GBRT), and extreme gradient boosting
(XGBoost) methods. Lastly, we consider Multi-layer Perceptron (MLP) neural networks. These
are characterized by a set of learnable parameters, Θ, and hyperparameters, ΛML. The structural
relationship, implied by each technique i, is thus represented by f{i,Θ,ΛML}(.).

In the linear models, LASSO and Ridge regressions choose L1 and L2 norms of the slope co-
efficients as the regularization terms, respectively, to reduce the multicollinearity in the feature
set, whereas ElasticNet uses the linear combination of L1 and L2.

26,27 PCR involves first reducing
the dimension of the explanatory variables by extracting the principal components of the features.
Then it includes a least square estimation using these principal components. PLS is essentially

26Their general forms are L1 =
∑K

k=1 |βk| ≤ c and L2 =
∑K

k=1 β
2
k ≤ c, where βk is the slope coefficient for feature

k and c is the threshold constant.
27See Diebold and Shin (2019) for more details and application of these techniques in finance
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similar to this technique, but unlike PCR, which focuses on the variance of the features, it incor-
porates the information content of the correlation between the dependent variable and the features
to reduce dimensionality.

The various dimension reduction approaches discussed above reduce the multicollinearity issues
often observed in datasets of highly correlated features, such as ours. For example, in Figure A6,
which presents the cross-correlations of the industry characteristics in our study, the following pairs
have an absolute correlation above 0.90: {debt at; capital ratio}, {dltt be; debt invcap}, {cash lt;
cash ratio}, {cfm; npm}, {debt capital; debt assets}, {aftret eq; aftret equity}, {debt invcap; capi-
tal ratio}, {equity invcap; capital ratio}, {opmad; npm}, {op- mbd; npm}, {pe exi; pe inc}, {profit lct;
ocf lct}, {ptpm; npm}, {quick ratio; cash ratio}, {roce; roe}, {sale invcap; at turn}, {totdebt invcap;
capital ratio}. For this reason, once we are reporting the aggregated SHAP value results in Table 7,
we exclude features that are highly correlated, to avoid double counting.

Differently from the ordinary least square model, the tree-based ones are minimally affected by
high correlations among features. In these models, in each decision tree, the explanatory variables
are divided into homogeneous subsamples, s, by recursive binary splitting, such that the mean
squared errors (MSE) in the adjacent regions are minimized.

min
s

[MSE (y|xk ≤ s) + MSE (y|xk ≥ s) ] (A9)

Then in each region, a piece-wise linear relationship is fitted between the dependent and ex-
planatory variables, often in the form of a mean function. This approach accommodates a more
general, even nonlinear, form relationship between these variables throughout the whole sample.
RFR involves a bootstrapping procedure on an ensemble of decision trees (Breiman, 2001). GBRT
instead searches for the optimal decision tree, using an iterative algorithm that improves the model’s
predictions by focusing on the samples that were poorly predicted in the previous iterations. XG-
Boost is a high-performance implementation of gradient boosting framework which incorporates
both L1 and L2 regularization terms in the objective function.

Lastly, we execute a class of feed-forward neural network called Multi-layer Perceptron (MLP),
which implements several nonlinear layers to incorporate nonlinearity in the functional form between
explanatory and dependent variables.

For the machine learning technique selection, we divide our sample into three subsets: training,
validation, and test sets. Since our focus is to identify the key drivers of the asset risk premia, which
we estimated using the whole sample through a GARCH specification, we use a random assignment
approach. This further ensures that the estimations and tests of the machine learning models are
based on subsets that follow a similar distribution. More specifically, we randomly assign 80% of the
observations to the training set, which we use to estimate the learnable parameter set, Θ. 10% of
the observations are reserved for the validation set, which we use to fine-tune the hyperparameters
of the operators. We use the remaining 10% of the sample as the test set, which we use to measure
the predictive performance of each machine learning technique. Specifically, we focus on metrics,
such as out-of-sample R-squared (R2

POS), mean absolute prediction error (MAPE), and root mean
squared prediction error (RMSPT). For consistency across models and regularization approaches,
all industry characteristics are normalized to have zero mean and standard deviation of one.

We take a grid search approach to choose the hyperparameters that result in the best-performing
technique in the validation set. That is, for each hyperparameter we consider a target value set,
e.g., λML ∈ {0.01, 0.1, 1, 10, 100} and train the models separately using each of these values and
the observations of the training set. Then based on the in-sample R2 metric of the models for the
observations in the validation set, we choose the hyperparameter with the best performance. Below
we summarize our choices for the key hyperparameters, ΛML.
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• Linear Models

We include an intercept in all linear regression estimators. Other than this, there is no hyperparam-
eter for the ordinary least squares method. For the LASSO estimator, we choose the regularization
parameter, λML = 0.00001, which scales the effect of L1 penalty. For the Ridge estimator, we
choose the regularization parameter, λML = 10, which scales the effect of L2 penalty. For the
ElasticNet estimator, we choose the regularization parameter, λML = 0.00001 and the ElasticNet
mixing parameter, l1ratiofloat = 0.5 to allow for a combination of L1 and L2 penalties. Choosing
l1ratiofloat = 0 is equivalent of using the Ridge operator while choosing l1ratiofloat = 1 converts
the Elastic net operator to a LASSO estimator. Note that setting the regularization parameter
λML = 0 in LASSO, Ridge, or Elastic net regressions converts these estimators to the ordinary least
square operator. Lastly, we choose to keep 30 and 5 components for the PCA and PLS estimators,
respectively.

• Tree-based Models

For the RFR estimator, we choose to have 100 trees in the forest, each with a maximum depth of
10. In each tree, we require at least two samples to split an internal node and at least one sample at
a leaf node (end node). By relaxing these two constraints, we shape the trees using the maximum
depth attribute. For the GBRT estimator, we choose a learning rate of 0.1, and we perform 100
boosting stages on trees with a maximum depth of 5. Note that there is a trade-off between the
two and our choice of the learning rate shrinks the contribution of each tree by 10% while the
100 boosting stage provides a sufficiently high performance. In each tree, we require at least two
samples to split an internal node and at least one sample at a leaf node (end node). Lastly, for the
XGBoost estimator, we choose a learning rate of 0.3 and trees with a maximum depth of 10. We
also choose the 0 and 1 weights for the L1 and L2 regularization terms, respectively.

• Neural Networks

For the multi-layer Perceptron (MLP) implementation of the feed-forward neural networks, we
choose to have 100 hidden layers with a strength of the L2 regularization term equal to 0.001.

E Additional Figures and Tables
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Figure A1. The figure shows the price of market risk estimated from a a specification of the
ICAPM which assumes that γj = 0, ∀ j, considering a constant price over each calendar year.
The shaded areas depict the NBER recession periods. The sample period is from start of January
1962 to end of December 2022 at the weekly frequency. The sample does not include the following
six industries due to missing observations from 1962 to 1985: Candy & Soda, Computer Software,
Defense, Fabricated Products, Healthcare, and Precious Metals.
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Figure A2. The figure plots the time-series of the demeaned information variables, used for
conditional asset pricing tests. It shows the US market dividend yield (DY), term spread (TS), the
short-term interest rate (T-Bill), default premium (DP), TED spread (TED), and the VIX Index
(VIXO). The shaded areas depict the NBER recession periods. The sample period is from January
1986 to December 2022 at the weekly frequency.
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Figure A3. The figure plots the price of Bond risk, estimated from a specification of ICAPM which
assumes that γ∆Bond ̸= 0, conditional on one information variable. The Bond risk is estimated
from the covariation of asset returns with the returns of the 10-year maturity Treasury bond. Each
panel represents the results using the lagged and demeaned values of the US market dividend yield
(DY), term spread (TS), the short-term interest rate (T-Bill), Default Premium (DP), TED spread
(TED), and the VIX Index (VIXO) as the information variable. The 95% conditional confidence
intervals are estimated using GLS standard errors corrected for heteroskedasticity, autocorrelation,
and cross-correlations of assets. The dotted lines show the maximum and minimum values of the
estimated prices of risk. The sample period is from January 1986 to December 2022 at the weekly
frequency.
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Figure A4. The figure plots the price of Term Spread risk, estimated from a specification of
ICAPM which assumes that γ∆TS ̸= 0, conditional on one information variable. The Term Spread
risk is estimated from the covariation of asset returns with the innovations in the Term Spread. Each
panel represents the results using the lagged and demeaned values of the US market dividend yield
(DY), term spread (TS), the short-term interest rate (T-Bill), Default Premium (DP), TED spread
(TED), and the VIX Index (VIXO) as the information variable. The 95% conditional confidence
intervals are estimated using GLS standard errors corrected for heteroskedasticity, autocorrelation,
and cross-correlations of assets. The dotted lines show the maximum and minimum values of the
estimated prices of risk. The sample period is from January 1986 to December 2022 at the weekly
frequency.
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Figure A5. The figure plots the price of Effective Federal Fund Rate risk, estimated from a
specification of ICAPM which assumes that γ∆EFFR ̸= 0, conditional on one information variable.
The Effective Federal Fund Rate risk is estimated from the covariation of asset returns with the
innovations in the Federal Fund Rate. Each panel represents the results using the lagged and
demeaned values of the US market dividend yield (DY), term spread (TS), the short-term interest
rate (T-Bill), Default Premium (DP), TED spread (TED), and the VIX Index (VIXO) as the
information variable. The 95% conditional confidence intervals are estimated using GLS standard
errors corrected for heteroskedasticity, autocorrelation, and cross-correlations of assets. The dotted
lines show the maximum and minimum values of the estimated prices of risk. The sample period
is from January 1986 to December 2022 at the weekly frequency.
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Figure A6. The figure plots the heatmap diagram for the cross-correlations between firm charac-
teristics.
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Table A1. This table introduces the industry groupings.

Industry Name Abv. Group Industry Name Abv. Group

Aircraft Aero Sensitive Insurance Insur Cyclical
Agriculture Agric Defensive Measuring and Control Equipment LabEq Sensitive
Automobiles and Trucks Autos Cyclical Machinery Mach Sensitive
Banking Banks Cyclical Restaurants, Hotels, Motels Meals Cyclical
Beer & Liquor Beer Defensive Medical Equipment MedEq Defensive
Construction Materials BldMt Cyclical Non-Metallic and Industrial Metal Mining Mines Sensitive
Printing and Publishing Books Sensitive Petroleum and Natural Gas Oil Sensitive
Shipping Containers Boxes Sensitive Almost Nothing Others Others
Business Services BusSv Others Business Supplies Paper Sensitive
Chemicals Chems Cyclical Personal Services PerSv Others
Electronic Equipment Chips Sensitive Real Estate RlEst Cyclical
Apparel Clths Cyclical Retail Rtail Cyclical
Construction Cnstr Cyclical Rubber and Plastic Products Rubbr Cyclical
Coal Coal Sensitive Shipbuilding, Railroad Equipment Ships Sensitive
Pharmaceutical Products Drugs Defensive Tobacco Products Smoke Defensive
Electrical Equipment ElcEq Sensitive Candy & Soda Soda Defensive
Fabricated Products FabPr Sensitive Computer Software Softw Sensitive
Trading Fin Cyclical Steel Works Etc Steel Sensitive
Food Products Food Defensive Communication Telcm Sensitive
Entertainment Fun Cyclical Recreation Toys Cyclical
Precious Metals Gold Defensive Transportation Trans Sensitive
Defense Guns Sensitive Textiles Txtls Cyclical
Computers Hardw Sensitive Utilities Util Defensive
Healthcare Hlth Defensive Wholesale Whlsl Others
Consumer Goods Hshld Sensitive

12



Table A2. This table introduces the industry characteristics.

Category Characteristic Name Abv. Description

Return Stock Return (ew) indret ew Equal weighted monthly stock returns of firms in an industry
Return Stock Return (vw) indret vw Value weighted monthly stock returns of firms in an industry
Return Stock Risk indstd ret Standard deviation of daily value-weighted industry returns in a month
Return Stock Size indsize Log of the average firm size per industry
Valuation Book/Market bm Book Value of Equity as a fraction of Market Value of Equity
Valuation Dividend Payout Ratio dpr Dividends as a fraction of Income Before Extra. Items
Valuation Dividend Yield divyield Indicated Dividend Rate as a fraction of Price
Valuation Enterprise Value Multiple evm Multiple of Enterprise Value to EBITDA
Valuation P/E (Diluted, Excl. EI) pe exi Price-to-Earnings, excl. Extraordinary Items (diluted)
Valuation P/E (Diluted, Incl. EI) pe inc Price-to-Earnings, incl. Extraordinary Items (diluted)
Valuation Price/Book ptb Multiple of Market Value of Equity to Book Value of Equity
Valuation Price/Cash flow pcf Multiple of Market Value of Equity to Net Cash Flow from Operating Activi-

ties
Valuation Price/Operating Earnings (Basic, Excl. EI) pe op basic Price to Operating EPS, excl. Extraordinary Items (Basic)
Valuation Price/Operating Earnings (Diluted, Excl. EI) pe op dil Price to Operating EPS, excl. Extraordinary Items (Diluted)
Valuation Price/Sales ps Multiple of Market Value of Equity to Sales
Valuation Shillers Cyclically Adjusted P/E Ratio capei Multiple of Market Value of Equity to 5-year moving average of Net Income
Valuation Trailing P/E to Growth (PEG) ratio peg trailing Price-to-Earnings, excl. Extraordinary Items (diluted) to 3-Year past EPS

Growth
Profitability After-tax Return on Average Common Equity aftret eq Net Income as a fraction of the average of Common Equity based on most

recent two periods
Profitability After-tax Return on Invested Capital aftret invcapx Net Income plus Interest Expenses as a fraction of Invested Capital
Profitability After-tax Return on Total Stockholders’ Equity aftret equity Net Income as a fraction of average of Total Shareholders’ Equity based on

most recent two periods
Profitability Effective Tax Rate efftax Income Tax as a fraction of Pretax Income
Profitability Gross Profit Margin gpm Gross Profit as a fraction of Sales
Profitability Gross Profit/Total Assets gprof Gross Profitability as a fraction of Total Assets
Profitability Net Profit Margin npm Net Income as a fraction of Sales
Profitability Operating Profit Margin After Depreciation opmad Operating Income After Depreciation as a fraction of Sales
Profitability Operating Profit Margin Before Depreciation opmbd Operating Income Before Depreciation as a fraction of Sales
Profitability Pre-tax Profit Margin ptpm Pretax Income as a fraction of Sales
Profitability Pre-tax return on Net Operating Assets pretret noa Operating Income After Depreciation as a fraction of average Net Operating

Assets (NOA) based on most recent two periods, where NOA is defined as
the sum of Property Plant and Equipment and Current Assets minus Current
Liabilities

Profitability Pre-tax Return on Total Earning Assets pretret earnat Operating Income After Depreciation as a fraction of average Total Earnings
Assets (TEA) based on most recent two periods, where TEA is defined as the
sum of Property Plant and Equipment and Current Assets

Table continues ...
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Table A2 continues,

Category Characteristic Name Abv. Description

Profitability Return on Assets roa Operating Income Before Depreciation as a fraction of the average Total
Assets based on most recent two periods

Profitability Return on Capital Employed roce Earnings Before Interest and Taxes as a fraction of average Capital Em-
ployed based on most recent two periods, where Capital Employed is the
sum of Debt in Long-term and Current Liabilities and Common/Ordinary
Equity

Profitability Return on Equity roe Net Income as a fraction of average Book Equity based on most recent
two periods, where Book Equity is defined as the sum of Total Parent
Stockholders’ Equity and Deferred Taxes and Investment Tax Credit

Efficiency Asset Turnover at turn Sales as a fraction of the average Total Assets based on the most recent
two periods

Efficiency Inventory Turnover inv turn COGS as a fraction of the average Inventories based on the most recent
two periods

Efficiency Payables Turnover pay turn COGS and change in Inventories as a fraction of the average of Accounts
Payable based on the most recent two periods

Efficiency Receivables Turnover rect turn Sales as a fraction of the average of Accounts Receivables based on the
most recent two periods

Efficiency Sales/Invested Capital sale invcap Sales per dollar of Invested Capital
Efficiency Sales/Stockholders Equity sale equity Sales per dollar of total Stockholders’ Equity
Efficiency Sales/Working Capital sale nwc Sales per dollar of Working Capital, defined as the difference between Cur-

rent Assets and Current Liabilities
Financial Soundness Cash Balance/Total Liabilities cash lt Cash Balance as a fraction of Total Liabilities
Financial Soundness Cash Flow Margin cfm Income before Extraordinary Items and Depreciation as a fraction of Sales
Financial Soundness Cash Flow/Total Debt cash debt Operating Cash Flow as a fraction of Total Debt
Financial Soundness Current Liabilities/Total Liabilities curr debt Current Liabilities as a fraction of Total Liabilities
Financial Soundness Free Cash Flow/Operating Cash Flow fcf ocf Free Cash Flow as a fraction of Operating Cash Flow, where Free Cash

Flow is defined as the difference between Operating Cash Flow and Capital
Expenditures

Financial Soundness Interest/Average Long-term Debt int debt Interest as a fraction of average Long-term debt based on most recent two
periods

Financial Soundness Interest/Average Total Debt int totdebt Interest as a fraction of average Total Debt based on most recent two
periods

Financial Soundness Inventory/Current Assets invt act Inventories as a fraction of Current Assets
Financial Soundness Long-term Debt/Book Equity dltt be Long-term Debt to Book Equity
Financial Soundness Long-term Debt/Total Liabilities lt debt Long-term Debt as a fraction of Total Liabilities
Financial Soundness Operating CF/Current Liabilities ocf lct Operating Cash Flow as a fraction of Current Liabilities

Table continues ...
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Table A2 continues,

Category Characteristic Name Abv. Description

Financial Soundness Receivables/Current Assets rect act Accounts Receivables as a fraction of Current Assets
Financial Soundness Short-Term Debt/Total Debt short debt Short-term Debt as a fraction of Total Debt
Financial Soundness Total Debt/EBITDA debt ebitda Gross Debt as a fraction of EBITDA
Financial Soundness Total Liabilities/Total Tangible Assets lt ppent Total Liabilities to Total Tangible Assets
Capitalization Capitalization Ratio capital ratio Total Long-term Debt as a fraction of the sum of Total Long-term Debt,

Common/Ordinary Equity and Preferred Stock
Capitalization Common Equity/Invested Capital equity invcap Common Equity as a fraction of Invested Capital
Capitalization Long-term Debt/Invested Capital debt invcap Long-term Debt as a fraction of Invested Capital
Capitalization Total Debt/Invested Capital totdebt invcap Total Debt (Long-term and Current) as a fraction of Invested Capital
Solvency After-tax Interest Coverage intcov Multiple of After-tax Income to Interest and Related Expenses
Solvency Interest Coverage Ratio intcov ratio Multiple of Earnings Before Interest and Taxes to Interest and Related

Expenses
Solvency Total Debt/Capital debt capital Total Debt as a fraction of Total Capital, where Total Debt is defined as

the sum of Accounts Payable and Total Debt in Current and Long- term
Liabilities, and Total Capital is defined as the sum of Total Debt and Total
Equity (common and preferred)

Solvency Total Debt/Equity de ratio Total Liabilities to Shareholders’ Equity (common and preferred)
Solvency Total Debt/Total Assets debt assets Total Debt as a fraction of Total Assets
Solvency Total Debt/Total Assets debt at Total Liabilities as a fraction of Total Assets
Liquidity Cash Conversion Cycle (Days) cash conversion Inventories per daily COGS plus Account Receivables per daily Sales minus

Account Payables per daily COGS
Liquidity Cash Ratio cash ratio Cash and Short-term Investments as a fraction of Current Liabilities
Liquidity Current Ratio curr ratio Current Assets as a fraction of Current Liabilities
Liquidity Quick Ratio (Acid Test) quick ratio Quick Ratio: Current Assets net of Inventories as a fraction of Current

Liabilities
Other Accruals/Average Assets accrual Accruals as a fraction of average Total Assets based on most recent two

periods
Other Avertising Expenses/Sales adv sale Advertising Expenses as a fraction of Sales
Other Labor Expenses/Sales staff sale Labor Expenses as a fraction of Sales
Other Research and Development/Sales rd sale R&D expenses as a fraction of Sales
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Table A3. The table presents the aggregated values of firm characteristics through time, averaged
over the cross-section of industries. Column ALL presents the mean of these values over the sample
period, whereas column Rec.− Exp. reports the difference in their mean values during the NBER
expansion and recession periods. Column Chr.:Rec. reports the slope coefficients from regressions
of characteristic values on a time trend interacted with an NBER recession dummy. The sample
period is from January 1986 to December 2022 at the weekly frequency.

Characteristic ALL Rec.− Exp. Chr.:Rec. Characteristic ALL Rec.− Exp. Chr.:Rec.

indret ew 0.011 -0.030 1.035*** sale invcap 1.427 0.037 0.412***
indret vw 0.010 -0.030 0.639*** sale nwc 6.056 0.044 4.565***
indsize 7.486 -0.148 -6.877*** cash debt 0.106 0.008 0.071***
indstd ret 1.320 1.077 19.246*** cash lt 0.226 -0.017 -0.448***
bm 0.579 0.102 4.122*** cfm 0.066 0.000 -0.249***
capei 13.967 -2.811 -88.940*** curr debt 0.490 0.014 -0.075***
divyield 0.021 0.005 0.127*** debt ebitda 1.629 -0.052 0.962***
dpr 0.140 -0.027 0.171*** dltt be 0.414 -0.002 0.200***
evm 8.185 -0.451 -27.139*** fcf ocf 0.458 0.005 -0.245
pcf 7.221 -1.528 -48.518*** int debt 0.095 0.008 -0.102***
pe exi 11.085 -2.611 -97.647*** int totdebt 0.073 0.008 -0.101***
pe inc 10.708 -2.899 -75.775*** invt act 0.240 0.000 0.112***
pe op basic 11.172 -2.454 -82.076*** lt debt 0.326 -0.013 0.031
pe op dil 15.889 -3.655 -86.330*** lt ppent 5.103 -0.141 0.498
peg trailing 0.519 -0.131 -4.454*** ocf lct 0.320 0.006 -0.010
ps 1.405 -0.372 -8.939*** profit lct 0.483 -0.001 -0.731***
ptb 2.047 -0.452 -10.460*** rect act 0.335 0.009 -0.070***
aftret eq 0.071 -0.006 -0.395*** short debt 0.174 0.012 0.017
aftret equity 0.068 -0.007 -0.383*** capital ratio 0.282 -0.003 0.143***
aftret invcapx 0.062 -0.003 -0.332*** debt invcap 0.282 -0.005 0.130***
efftax 0.272 0.065 0.091*** equity invcap 0.697 0.004 -0.128***
gpm 0.328 0.000 -0.064*** totdebt invcap 0.374 0.004 0.184***
gprof 0.284 0.004 -0.014 de ratio 1.418 0.068 0.501**
npm 0.012 0.001 -0.273*** debt assets 0.543 0.004 0.096***
opmad 0.057 0.004 -0.143*** debt at 0.237 -0.002 0.120***
opmbd 0.108 0.003 -0.135*** debt capital 0.431 -0.001 0.135***
pretret earnat 0.093 0.000 -0.140*** intcov 2.550 -0.409 -11.848***
pretret noa 0.152 -0.005 -0.116*** intcov ratio 3.622 -0.517 -3.207***
ptpm 0.029 0.002 -0.376*** cash conversion 167.170 -76.249 67.102***
roa 0.099 0.001 -0.136*** cash ratio 0.542 -0.050 -1.234***
roce 0.092 -0.003 -0.187*** curr ratio 2.015 -0.065 -1.350***
roe 0.066 -0.005 -0.493*** quick ratio 1.434 -0.055 -1.290***
at turn 0.950 0.015 -0.086 accrual -0.045 -0.007 -0.187***
inv turn 29.200 -17.203 -23.036*** adv sale 0.005 0.000 -0.002
pay turn 9.557 -0.038 6.071*** rd sale 0.021 0.004 -0.029***
rect turn 9.262 -0.082 1.425 staff sale 0.012 -0.003 0.006
sale equity 2.209 0.084 1.122***
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Table A4. This table presents the average (Mean) and standard deviation (St. Dev.) of conditional covariances of industry excess
returns with market risk, as well as the proxies for the intertemporal risk, including the long-term bond return (Bond), innovations in the
Term Spread (∆TS), innovations in the Default Premium (∆DP), and innovations in the Effective Federal Fund Rate (∆EFFR). Panel
A presents these statistics averaged over all industries and time (ALL). It also reports the difference in these values during the NBER
recession and expansion periods ( Rec.−Exp.). Panel B presents these statistics for each industry over time. Conditional covariances are
from weekly returns (in percentage) and are calculated through the Asymmetric Dynamic Conditional Correlation (ADCC) methodology.
The sample period is from January 1986 to December 2022 at the weekly frequency.

Covt(Ri,Market) Covt(Ri,Bond) Covt(Ri,∆TS) Covt(Ri,∆DP) Covt(Ri,∆EFFR)
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

Panel A: Business Cycle

ALL 0.055 0.083 -0.294 0.766 0.805 7.131 -1.586 4.327 -1.334 5.014

Rec.− Exp. 0.103 0.148 -0.473 0.513 -6.610 3.037 -4.667 9.935 -0.139 8.206

Panel B: Industry

Aero 6.045 9.826 -0.402 0.818 0.805 10.197 -1.462 4.581 -0.742 4.195
Agric 4.259 5.556 -0.307 0.520 0.102 4.378 -1.640 2.828 -1.950 4.737
Autos 7.070 10.252 -0.535 0.828 2.241 9.140 -2.703 8.459 -1.043 3.017
Banks 6.580 9.587 -0.376 1.211 1.945 10.002 -1.326 3.547 -2.278 7.703
Beer 3.582 4.976 0.159 0.442 -1.635 5.277 -0.724 1.474 -1.104 1.902
BldMt 6.312 10.193 -0.326 0.815 1.303 7.479 -2.149 6.542 -1.498 3.459
Books 5.815 8.970 -0.247 0.800 0.674 7.876 -1.873 6.623 -2.220 7.604
Boxes 5.357 7.386 -0.295 0.577 1.434 5.759 -1.250 2.551 -1.534 2.316
BusSv 6.273 10.032 -0.291 0.779 0.453 8.064 -1.547 4.690 -1.524 6.408
Chems 5.840 8.602 -0.512 0.806 2.169 8.123 -2.100 5.017 -1.611 2.223
Chips 7.331 8.806 -0.480 0.741 1.367 7.369 -1.972 2.861 -2.607 6.330
Clths 5.944 8.247 -0.341 0.625 1.548 6.094 -1.025 2.724 -1.855 2.592
Cnstr 6.869 10.311 -0.298 0.852 -0.155 7.636 -1.756 4.186 -2.454 4.322
Coal 6.186 8.597 -0.730 0.920 4.416 8.170 -1.793 4.536 -3.906 13.666
Drugs 4.420 5.695 0.068 0.488 -1.341 4.415 -0.736 1.288 -1.465 1.743
ElcEq 6.836 8.645 -0.371 0.898 1.192 7.538 -1.664 5.165 -2.580 4.877
FabPr 6.168 8.634 -0.583 0.727 2.021 7.030 -3.141 9.309 -0.306 2.154
Fin 7.327 10.148 -0.478 1.086 2.021 12.001 -1.741 4.458 -2.013 7.472
Food 3.311 4.672 0.104 0.520 -1.014 4.669 -0.463 1.200 -1.132 1.915
Fun 7.034 11.324 -0.331 0.886 -0.293 7.031 -2.292 4.703 -0.961 2.759
Gold 1.470 2.607 -0.086 0.834 1.023 4.811 -1.959 2.749 -0.842 5.168
Guns 3.560 5.315 -0.029 0.325 0.177 4.265 -0.776 1.303 0.753 0.980

Table continues ...
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Table A4 continues

Covt(Ri,Market) Covt(Ri,Bond) Covt(Ri,∆TS) Covt(Ri,∆DP) Covt(Ri,∆EFFR)
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

Hardw 6.686 7.309 -0.474 0.578 1.138 5.589 -1.344 2.115 -1.282 2.986
Hlth 4.906 7.753 -0.160 0.404 -0.228 4.479 -1.421 3.038 -0.728 5.185
Hshld 3.941 5.966 0.051 0.506 -1.137 5.201 -0.733 1.813 -1.302 4.438
Insur 5.646 10.464 -0.173 0.820 0.120 8.885 -1.313 3.280 -1.238 2.200
LabEq 6.485 8.574 -0.405 0.671 0.973 7.827 -1.995 4.324 -1.653 6.986
Mach 7.070 10.342 -0.650 0.870 3.337 7.858 -2.219 6.532 -1.429 6.036
Meals 4.822 6.809 -0.112 0.602 -0.255 4.925 -1.188 2.186 -1.194 1.972
MedEq 5.111 7.540 -0.071 0.513 -0.724 5.320 -1.066 2.362 -1.326 1.925
Mines 6.011 9.373 -0.752 0.749 4.007 6.628 -2.559 4.612 -1.511 2.434
Oil 4.950 7.964 -0.445 0.764 2.341 7.413 -1.733 5.065 0.319 4.050
Other 5.127 5.783 -0.274 0.651 0.431 6.579 -1.260 2.388 -1.642 2.152
Paper 4.901 6.166 -0.332 0.589 0.903 7.325 -1.629 2.496 -1.346 2.111
PerSv 5.569 8.301 -0.172 0.720 0.163 6.073 -1.439 4.329 -0.241 8.751
RlEst 5.851 12.014 -0.425 0.895 1.059 5.704 -2.226 8.635 -1.045 4.202
Rtail 5.477 6.665 -0.167 0.564 0.470 5.547 -1.058 1.555 -2.203 5.254
Rubbr 5.489 7.761 -0.212 0.625 0.822 5.341 -1.640 2.868 -1.503 1.737
Ships 5.318 7.494 -0.519 0.757 2.512 7.301 -1.343 4.512 -1.493 6.770
Smoke 3.466 3.641 0.139 0.455 -2.253 4.083 -0.893 1.477 0.575 2.988
Soda 3.896 4.498 0.107 0.494 -1.115 3.589 -0.846 1.902 -0.195 1.552
Softw 6.849 8.244 -0.436 0.688 0.637 7.838 -1.491 1.974 -1.422 7.745
Steel 7.678 10.230 -0.953 1.072 4.505 10.969 -3.215 6.557 -0.701 5.854
Telcm 4.940 7.267 -0.099 0.770 0.394 6.016 -1.421 4.590 -0.861 1.051
Toys 5.605 6.877 -0.282 0.508 0.225 6.079 -1.799 2.979 -1.052 3.799
Trans 5.864 8.343 -0.402 0.643 1.251 6.229 -1.589 2.801 -1.709 3.751
Txtls 6.464 11.341 -0.417 0.768 1.477 8.291 -1.772 4.221 -2.610 9.062
Util 3.144 6.055 0.185 0.521 -2.484 5.272 -0.665 3.219 -0.666 2.051
Whlsl 5.500 8.889 -0.261 0.718 0.444 6.023 -1.787 4.699 -1.029 3.162
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Table A5. The table reports coefficients of the asset pricing models, imposing constant prices of
risk. Column 1 reports the slope coefficients for the market model, which assumes that γj = 0, ∀ j.
Columns 2 to 5 report the results for the ICAPM model with one state risk proxy, including
the long-term bond return (Bond), innovations in the Term Spread (∆TS), innovations in the
Default Premium (∆DP), and innovations in the Effective Federal Fund Rate (∆EFFR). Column
6 reports the estimates of the prices of risk for the model that includes all the macro-economic risk
proxies. P-values are estimated using GLS standard errors (reported in parenthesis) corrected for
heteroskedasticity, autocorrelation, and cross-correlations of assets. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively. The sample period is from January 1986
to December 2022 at the weekly frequency.

(1) (2) (3) (4) (5) (6)

intercept 0.085** 0.076** 0.084** 0.077** 0.086** 0.077**
(0.036) (0.036) (0.036) (0.036) (0.036) (0.036)

Market 2.102*** 2.227*** 2.081*** 2.714*** 2.116*** 2.700***
(0.244) (0.255) (0.245) (0.269) (0.244) (0.271)

Bond 3.447*
(1.864)

∆TS -0.039 -0.037
(0.183) (0.185)

∆DP 1.615*** 1.620***
(0.335) (0.337)

∆EFFR 0.035 0.077
(0.179) (0.180)

Observations 94521 94521 94521 94521 94521 94521
Adjusted R2 0.001 0.000 0.001 0.001 0.001 0.001
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Table A6. The table reports the slope coefficients for the prices of risk from various ICAPM
models, conditional on all information variables. Column 1 reports these values for the market
model, which assumes that γj = 0, ∀ j. Columns 2 to 5 reports them for the ICAPM models
with one additional state risk proxy, such as the long-term bond return (Bond), innovations in the
Term Spread (∆TS), innovations in the Default Premium (∆DP), and innovations in the Effective
Federal Fund Rate (∆EFFR), whereas Column 6 reports them for the ICAPM model that includes
all the macro state risk proxies. The joint p-values for each price of risk are reported in Table 3.
Standard errors (reported in parentheses) are estimated using GLS standard errors corrected for
heteroskedasticity, autocorrelation, and cross-correlations of assets. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively. The sample period is from January 1986
to December 2022 at the weekly frequency.

(1) (2) (3) (4) (5) (6)

intercept 0.084** 0.074* 0.080** 0.087** 0.089** 0.087**
(0.037) (0.038) (0.038) (0.038) (0.037) (0.038)

intercept:DY 0.115 0.149* 0.124 0.100 0.127 0.123
(0.079) (0.080) (0.079) (0.079) (0.079) (0.080)

intercept:TS -0.021 -0.024 -0.020 -0.022 -0.011 -0.011
(0.045) (0.046) (0.046) (0.046) (0.046) (0.046)

intercept:T-Bill 0.016 0.017 0.013 0.025 0.015 0.021
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024)

intercept:DP -0.084 -0.100 -0.093 -0.043 -0.091 -0.060
(0.149) (0.151) (0.149) (0.150) (0.149) (0.151)

intercept:TED -0.362*** -0.411*** -0.364*** -0.418*** -0.362*** -0.421***
(0.126) (0.128) (0.126) (0.127) (0.126) (0.128)

intercept:VIXO 0.008 0.009 0.009 0.007 0.007 0.007
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Market 2.130*** 2.513*** 1.868*** 2.893*** 2.222*** 2.741***
(0.492) (0.532) (0.512) (0.530) (0.497) (0.553)

Market:DY 2.324*** 1.955*** 2.222*** 1.272** 2.442*** 1.390***
(0.487) (0.511) (0.506) (0.514) (0.491) (0.534)

Market:TS -0.606* -0.482 -0.714** -0.570 -0.528 -0.573
(0.324) (0.362) (0.331) (0.356) (0.328) (0.366)

Market:T-Bill -0.257* -0.268* -0.187 -0.433*** -0.286* -0.446***
(0.146) (0.158) (0.151) (0.161) (0.147) (0.168)

Market:DP -0.914* -0.789 -0.139 -1.460** -1.085** -1.026
(0.518) (0.594) (0.545) (0.600) (0.524) (0.630)

Market:TED -0.935*** -0.763* -1.478*** 0.607 -1.010*** 0.111
(0.362) (0.397) (0.400) (0.415) (0.366) (0.462)

Market:VIXO 0.017 0.012 0.019 0.001 0.020 0.005
(0.018) (0.019) (0.018) (0.019) (0.018) (0.020)

Bond 5.762**
(2.408)

Bond:DY -14.163***
(3.777)

Bond:TS 1.386
(2.498)

Bond:T-Bill 0.660
(1.229)

Table continues ...
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Table A6 continues

(1) (2) (3) (4) (5) (6)

Bond:DP 3.552
(5.123)

Bond :TED 10.613**
(4.800)

Bond :VIXO -0.040
(0.144)

∆TS -0.434* -0.403
(0.251) (0.256)

∆TS:DY 0.223 0.316
(0.401) (0.410)

∆TS:TS -0.200 -0.308
(0.236) (0.243)

∆TS:T-Bill 0.008 -0.039
(0.116) (0.119)

∆TS:DP 1.571*** 1.383***
(0.457) (0.472)

∆TS:TED -0.986*** -0.889**
(0.382) (0.400)

∆TS:VIXO -0.005 -0.002
(0.017) (0.018)

∆DP 3.571*** 3.726***
(0.834) (0.836)

∆DP:DP 0.026 -0.515
(0.922) (0.931)

∆DP:DY -6.601*** -6.161***
(1.051) (1.054)

∆DP:TS 0.533 0.667
(0.558) (0.559)

∆DP:T-Bill 0.368 0.232
(0.320) (0.322)

∆DP:TED 3.731*** 3.825***
(0.619) (0.627)

∆DP:VIXO -0.036 -0.041
(0.028) (0.028)

∆EFFR 1.106*** 1.112***
(0.388) (0.393)

∆EFFR:DY 0.963** 0.927**
(0.374) (0.380)

∆EFFR:TS 0.920*** 0.979***
(0.347) (0.353)

∆EFFR:T-Bill -0.396*** -0.387***
(0.109) (0.111)

∆EFFR:DP -1.681*** -1.217**
(0.541) (0.561)

∆EFFR:TED -0.023 -0.146
(0.381) (0.395)

∆EFFR:VIXO -0.025** -0.023**
(0.011) (0.011)

Observations 94521 94521 94521 94521 94521 94521
Adjusted R2 0.009 0.010 0.010 0.014 0.009 0.015
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Table A7. The table reports the prediction performance metrics for ten machine learning tech-
niques, adopted to predict the weekly realized returns for the industry portfolios. These metrics
are the coefficient of determination over the training set (R2

in) and test set (R2
POS), mean absolute

prediction error (MAPE), and root mean squared prediction error (RMSPE). MAPE and RMSPE
values are multiplied by 100 to increase readability. We consider six linear regressions with dimen-
sion reduction, including ordinary least squares (LS), least absolute shrinkage and selection operator
(LASSO), Ridge (Ridge), elastic net (ElasticNet), principal component analysis in conjunction with
least squares (PCR), and partial least squares (PLS). We also consider three decision tree models,
including random forest regressions (RFR), gradient-boosted regression trees (GBRT), and extreme
gradient boosting (XGBoost) method. Lastly, we consider Multi-layer Perceptron (MLP) neural
networks. The sample period is from January 1986 to December 2022 at the weekly frequency.

R2
in R2

POS MAPE RMSPE

LS 0.003 -0.008 0.029 0.042

LASSO 0.003 0.001 0.029 0.042

Ridge 0.003 -0.008 0.029 0.042

ElasticNet 0.003 -0.001 0.029 0.042

PLS. 0.002 0.000 0.029 0.042

PCR 0.002 0.001 0.029 0.042

RFR 0.027 -0.002 0.029 0.042

GBRT 0.050 -0.008 0.029 0.042

XGBOOST 0.203 -0.062 0.030 0.043

MLP 0.006 -2.674 0.032 0.080
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Table A8. The table presents the aggregated SHAP values of feature contributions to the asset
risk premia over time. For each feature, the average absolute SHAP values, measured based on the
output of the XGBoost model, are calculated over the cross-section of all industries. Column ALL
presents the mean of these values over the sample period, whereas column Rec.−Exp. reports the
difference in their means during the NBER expansion and recession periods. For the sake of better
readability, weekly SHAP values are multiplied by 10,000. The sample period is from January 1986
to December 2022 at the weekly frequency.

Characteristic ALL Rec.− Exp. Chr.:Rec. Characteristic ALL Rec.− Exp. Chr.:Rec.

indret ew 0.501 0.100 0.064*** sale invcap 2.273 2.067 0.696***
indret vw 2.039 -0.341 -0.077*** sale nwc 0.628 -0.137 0.023***
indsize 3.065 -0.176 -0.037 cash debt 0.619 0.040 0.014
indstd ret 4.628 5.645 1.592*** cash lt 0.350 -0.026 0.006
bm 0.757 0.153 0.040*** cfm 0.337 0.049 0.003
capei 3.597 4.514 1.418*** curr debt 1.091 -0.037 -0.010
divyield 1.991 0.022 -0.003 debt ebitda 0.405 -0.019 -0.006
dpr 1.126 0.116 0.005 dltt be 0.159 0.017 0.009***
evm 8.576 0.471 0.134*** fcf ocf 0.589 -0.012 0.006
pcf 8.538 -0.567 -0.215*** int debt 3.310 -0.877 0.051
pe exi 0.969 -0.078 -0.087 int totdebt 5.040 1.001 0.168***
pe inc 0.511 -0.065 -0.010** invt act 0.474 0.028 0.007
pe op basic 2.675 -0.149 -0.079*** lt debt 1.641 0.046 -0.023
pe op dil 3.190 -0.404 -0.047* lt ppent 0.736 -0.076 -0.005
peg trailing 1.007 -0.092 -0.004 ocf lct 0.332 -0.015 0.004
ps 0.454 0.065 0.018*** profit lct 0.759 -0.030 0.005
ptb 2.821 0.411 0.126*** rect act 1.052 -0.168 0.016
aftret eq 0.232 -0.021 0.029*** short debt 0.562 0.017 -0.012
aftret equity 0.766 0.006 0.006 capital ratio 0.190 -0.025 -0.001
aftret invcapx 0.732 0.040 -0.004 debt invcap 0.300 -0.003 -0.017***
efftax 3.644 -0.387 -0.107*** equity invcap 1.077 -0.062 -0.027**
gpm 0.316 0.042 0.005 totdebt invcap 0.196 -0.020 -0.001
gprof 0.335 0.097 0.074*** de ratio 0.249 0.000 -0.003
npm 0.637 -0.021 -0.012 debt assets 0.227 -0.007 0.000
opmad 0.843 -0.122 -0.021*** debt at 0.326 -0.013 0.005
opmbd 0.239 -0.009 0.003 debt capital 0.190 0.055 0.025***
pretret earnat 0.110 -0.014 -0.001 intcov 0.383 0.181 0.078***
pretret noa 0.326 0.028 0.005 intcov ratio 2.256 -0.376 -0.088***
ptpm 0.289 0.175 0.071*** cash conversion 2.066 0.156 0.031
roa 0.229 0.029 0.001 cash ratio 0.358 0.048 0.008**
roce 0.170 -0.022 -0.001 curr ratio 1.795 -0.164 -0.009
roe 0.177 0.072 0.029*** quick ratio 0.715 0.057 0.011
at turn 0.818 0.021 -0.014 accrual 0.722 -0.026 -0.001
inv turn 2.215 0.201 -0.060** adv sale 0.094 -0.024 0.004***
pay turn 6.515 -0.579 -0.192*** rd sale 0.167 -0.012 0.001
rect turn 0.708 -0.128 -0.033** staff sale 0.004 0.000 0.000
sale equity 0.909 -0.061 0.025**
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Table A9. The table presents the aggregated SHAP values of feature contributions to the asset
risk premia over the cross-section. For each feature, the mean absolute SHAP values, measured
based on the output of the XGBoost model, are calculated over the whole time period and cross-
section of industry groups: Defensive (Def.), Cyclical (Cycl.), Sensitive (Sens.) and Others (Othr.).
For the sake of better readability, weekly SHAP values are multiplied by 10,000. The sample period
is from January 1986 to December 2022 at the weekly frequency.

Characteristic Def. Cycl. Sens. Othr. Characteristic Def. Cycl. Sens. Othr.

indret ew 0.482 0.508 0.514 0.454 sale invcap 2.103 2.239 2.333 2.525
indret vw 2.051 2.067 2.011 2.049 sale nwc 0.622 0.653 0.618 0.605
indsize 5.352 2.608 2.435 2.212 cash debt 0.999 0.653 0.465 0.310
indstd ret 5.115 4.364 4.882 3.136 cash lt 0.403 0.376 0.323 0.252
bm 0.589 0.868 0.758 0.760 cfm 0.331 0.346 0.342 0.289
capei 3.588 3.533 3.837 2.654 curr debt 0.951 1.076 1.166 1.125
divyield 1.775 1.987 2.104 1.986 debt ebitda 0.467 0.463 0.332 0.395
dpr 1.002 1.177 1.079 1.480 dltt be 0.197 0.147 0.149 0.163
evm 7.819 8.822 8.780 8.522 fcf ocf 0.886 0.585 0.452 0.547
pcf 7.975 8.706 8.637 8.818 int debt 3.030 3.387 3.414 3.202
pe exi 1.213 0.688 1.097 0.772 int totdebt 4.309 5.287 5.206 5.105
pe inc 0.681 0.489 0.460 0.427 invt act 0.364 0.514 0.479 0.569
pe op basic 2.318 2.836 2.671 2.986 lt debt 1.484 1.650 1.704 1.680
pe op dil 3.026 3.261 3.091 3.833 lt ppent 0.475 1.087 0.610 0.702
peg trailing 1.599 0.956 0.773 0.886 ocf lct 0.405 0.318 0.325 0.242
ps 0.501 0.442 0.439 0.459 profit lct 1.074 0.701 0.681 0.573
ptb 2.425 2.904 2.893 3.138 rect act 1.000 1.023 1.107 1.020
aftret eq 0.315 0.186 0.248 0.122 short debt 0.628 0.560 0.563 0.394
aftret equity 0.731 0.713 0.798 0.890 capital ratio 0.234 0.157 0.206 0.124
aftret invcapx 0.642 0.805 0.714 0.767 debt invcap 0.245 0.301 0.335 0.268
efftax 3.637 3.673 3.705 3.246 equity invcap 1.227 0.901 1.161 0.948
gpm 0.317 0.336 0.291 0.363 totdebt invcap 0.268 0.171 0.183 0.180
gprof 0.423 0.274 0.341 0.309 de ratio 0.204 0.298 0.245 0.192
npm 0.719 0.627 0.615 0.586 debt assets 0.270 0.203 0.225 0.218
opmad 0.773 0.895 0.836 0.865 debt at 0.271 0.329 0.339 0.387
opmbd 0.227 0.240 0.243 0.248 debt capital 0.222 0.180 0.189 0.150
pretret earnat 0.120 0.112 0.108 0.088 intcov 0.318 0.411 0.405 0.329
pretret noa 0.298 0.308 0.360 0.293 intcov ratio 2.547 2.062 2.319 1.943
ptpm 0.323 0.268 0.301 0.231 cash conversion 2.707 2.042 1.809 1.845
roa 0.190 0.244 0.221 0.315 cash ratio 0.372 0.348 0.366 0.323
roce 0.172 0.168 0.172 0.167 curr ratio 1.730 1.823 1.812 1.770
roe 0.230 0.168 0.162 0.151 quick ratio 0.716 0.753 0.709 0.603
at turn 0.674 0.973 0.716 1.111 accrual 0.779 0.710 0.732 0.581
inv turn 2.104 2.412 2.036 2.647 adv sale 0.142 0.088 0.075 0.088
pay turn 6.755 5.884 6.825 6.737 rd sale 0.243 0.137 0.155 0.148
rect turn 0.986 0.639 0.631 0.654 staff sale 0.005 0.004 0.004 0.002
sale equity 1.144 0.790 0.904 0.803
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Table A10. The table presents the aggregated SHAP values of feature contributions to the asset risk premia over feature characteristics.
First, for each industry, the average absolute SHAP values, measured based on the output of the XGBoost model, are calculated over
the sample period. In the second step, the sum of these values, over each feature characteristic, is calculated and reported. For the sake
of better readability, weekly SHAP values are multiplied by 10,000. The sample period is from January 1986 to December 2022 at the
weekly frequency.

Industry ΣReturn ΣValuation ΣProfitability ΣEfficiency ΣFinancial ΣCapitalization ΣSolvency ΣLiquidity ΣOther
Soundness

Aero 9.137 34.609 8.511 14.338 16.721 1.606 3.875 4.463 0.986
Agric 9.856 37.490 9.285 14.161 16.530 1.910 3.176 4.762 1.140
Autos 9.622 35.882 9.381 12.154 16.180 1.407 3.499 4.682 1.005
Banks 13.998 33.718 10.463 7.372 24.526 0.929 2.897 6.277 1.043
Beer 8.039 36.955 8.301 15.351 18.129 1.845 4.669 4.890 0.949
BldMt 7.991 36.240 9.504 12.223 17.092 1.325 3.892 4.565 1.046
Books 8.956 33.755 9.250 14.821 18.519 1.554 4.603 4.566 1.105
Boxes 9.834 35.331 8.744 13.822 17.973 3.120 3.708 4.890 1.062
BusSv 6.972 35.571 9.710 14.479 17.535 1.519 3.727 4.211 0.812
Chems 7.829 36.791 9.818 13.459 18.058 1.702 4.766 4.927 1.166
Chips 9.821 38.470 9.465 14.604 16.393 2.144 3.392 4.703 0.654
Clths 8.643 35.839 7.927 16.407 15.837 1.290 4.013 5.083 0.835
Cnstr 10.363 37.405 10.180 12.816 19.362 1.649 2.820 5.277 0.838
Coal 16.338 43.811 8.899 17.676 16.894 2.422 3.408 5.682 1.149
Drugs 27.996 24.669 8.757 11.388 13.957 1.678 2.715 8.472 2.335
ElcEq 8.963 37.203 9.432 13.116 15.570 1.206 3.914 4.556 0.933
FabPr 10.157 41.685 8.269 14.734 16.670 1.749 3.661 4.292 0.869
Fin 11.233 35.834 9.277 12.689 22.354 1.194 3.778 5.528 1.059
Food 6.738 34.012 9.082 13.871 17.479 1.321 4.053 4.818 0.994
Fun 10.641 39.469 8.650 15.706 17.237 2.526 2.550 5.139 0.788
Gold 29.614 34.699 9.258 14.338 14.831 2.633 4.251 6.121 1.186
Guns 8.146 36.719 9.008 14.180 16.738 1.361 4.264 4.672 0.923
Hardw 10.904 36.188 10.594 13.567 18.289 2.233 3.718 4.126 0.872
Hlth 7.398 37.865 9.069 14.936 16.184 1.561 3.137 4.961 0.616

Table continues ...
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Table A10 Continued

Industry ΣReturn ΣValuation ΣProfitability ΣEfficiency ΣFinancial ΣCapitalization ΣSolvency ΣLiquidity ΣOther
Soundness

Hshld 7.301 32.747 9.612 12.575 16.926 1.044 3.772 4.512 1.018
Insur 9.480 35.135 9.066 15.952 22.337 1.645 3.547 4.218 1.142
LabEq 8.472 36.766 8.622 15.716 15.830 2.321 3.857 4.366 0.772
Mach 8.693 37.003 9.120 13.565 16.214 1.288 3.927 4.495 0.855
Meals 7.380 37.631 7.698 15.255 17.015 1.759 3.446 4.856 0.785
MedEq 12.440 31.103 10.571 13.664 14.631 2.105 3.217 5.310 1.243
Mines 13.163 36.196 8.531 14.629 18.049 1.810 3.989 5.328 1.217
Oil 11.529 35.440 9.037 12.225 19.112 2.137 3.562 4.628 0.763
Other 8.852 37.871 8.604 15.926 16.473 2.236 2.603 4.462 0.922
Paper 7.425 35.484 9.193 12.853 17.697 1.528 3.955 4.919 1.053
PerSv 7.778 38.687 8.117 14.748 16.664 1.537 3.038 4.734 0.711
RlEst 10.469 37.432 9.007 14.821 17.031 2.183 2.562 5.251 0.782
Rtail 8.755 36.390 6.455 13.725 15.579 0.794 3.967 4.430 0.881
Rubbr 7.500 37.011 9.453 13.233 17.059 1.459 3.977 4.999 1.071
Ships 9.766 37.790 8.906 13.554 17.457 1.537 3.714 4.807 1.033
Smoke 9.951 35.457 10.155 14.900 20.499 2.356 5.102 5.711 1.149
Soda 10.538 34.381 8.955 14.760 17.845 1.819 3.315 5.486 0.996
Softw 11.230 33.594 10.194 15.203 18.185 2.555 3.836 4.661 0.912
Steel 11.014 38.143 8.931 11.992 17.522 1.464 3.630 4.189 1.058
Telcm 8.686 33.952 9.329 14.145 18.739 2.839 2.665 5.217 1.191
Toys 9.323 37.237 9.485 14.579 15.790 1.510 3.075 4.519 0.761
Trans 7.300 37.495 8.641 13.930 16.868 1.759 3.018 4.847 0.884
Txtls 9.984 38.000 8.888 13.464 17.147 1.572 3.460 4.739 0.881
Util 7.427 38.475 7.736 16.514 19.961 2.511 4.694 4.718 1.091
Whlsl 7.800 34.748 8.135 15.178 15.599 0.787 3.507 4.757 0.831
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Table A11. The table presents the aggregated ranking of features based on their SHAP values for
the asset risk premia. For each feature, the average absolute SHAP values, measured based on the
output of the XGBoost model, is calculated over time. Then features are ranked based on their
SHAP values for each industry (higher SHAP values have lower ranks). Column ALL presents the
cross-sectional mean of these values over the sample period, whereas column Rec. − Exp. reports
the difference in their mean values during the NBER expansion and recession periods. The sample
period is from January 1986 to December 2022 at the weekly frequency.

Characteristic ALL Rec.− Exp. Characteristic ALL Rec.− Exp.

indret ew 41.490 -4.224 sale invcap 15.000 -7.000
indret vw 15.714 2.306 sale nwc 36.408 6.122
indsize 12.653 1.327 cash debt 43.184 -4.837
indstd ret 6.633 -5.041 cash lt 51.327 3.429
bm 32.245 -3.653 cfm 50.878 -1.939
capei 8.816 -6.490 curr debt 25.367 0.551
divyield 16.531 -1.082 debt ebitda 48.980 2.857
dpr 26.224 -1.429 dltt be 65.612 -1.918
evm 1.755 0.265 fcf ocf 41.224 0.837
pcf 1.735 1.469 int debt 8.776 5.531
pe exi 31.653 5.449 int totdebt 4.816 1.041
pe inc 41.959 5.041 invt act 43.571 -1.102
pe op basic 11.735 1.306 lt debt 20.306 -1.082
pe op dil 9.469 3.163 lt ppent 41.184 2.816
peg trailing 29.224 1.857 ocf lct 52.082 1.776
ps 44.796 -2.408 profit lct 32.776 1.714
ptb 10.878 -0.449 rect act 25.551 3.224
aftret eq 61.714 -0.041 short debt 40.306 -0.122
aftret equity 31.531 0.082 capital ratio 64.082 1.592
aftret invcapx 32.653 -1.429 debt invcap 54.837 0.388
efftax 7.755 2.163 equity invcap 27.531 0.408
gpm 53.816 -2.102 totdebt invcap 61.939 1.327
gprof 51.796 -4.612 de ratio 58.776 0.327
npm 36.714 1.633 debt assets 59.408 0.755
opmad 29.041 3.673 debt at 52.388 1.694
opmbd 58.429 1.020 debt capital 63.102 -4.224
pretret earnat 69.449 -0.184 intcov 48.245 -7.102
pretret noa 52.061 -0.898 intcov ratio 14.714 3.122
ptpm 54.980 -9.816 cash conversion 16.735 -1.714
roa 59.041 -1.694 cash ratio 50.204 -2.245
roce 64.347 1.408 curr ratio 18.673 0.306
roe 63.959 -5.265 quick ratio 33.531 0.469
at turn 34.082 -0.898 accrual 32.714 2.000
inv turn 15.020 -0.571 adv sale 70.306 0.592
pay turn 4.041 2.000 rd sale 65.082 0.388
rect turn 36.571 6.102 staff sale 73.000 0.000
sale equity 27.878 2.041

27



 Cyclicality in the Prices of Risk: What More Can We Learn from Explainable AI?  

 

 

 

 
 
 

DeGroote School of Business at McMaster University 
1280 Main Street West 
Hamilton, Ontario, L8S 4M4 

Michael Lee-Chin & Family Institute for Strategic 
Business Studies 

Working Paper Series in Strategic Business Valuation 

This working paper series presents original contributions focused on the theme of creation and 

measurement of value in business enterprises and organizations. 

 


	 Introduction
	 Empirical Methodology
	 Asset pricing specification
	 Empirical specification for the price of risk
	 Risk Factor Contribution
	 Feature Attribution and SHAP Values

	 Data 
	 Test assets
	 State variables
	 Conditioning (Information) Variables
	Firm Characteristics

	 The Prices of Risk Through Time
	 Conditional Price of Risk
	Time-varying Price of Risk

	 Determinants of Risk Premia
	 Risk Factor Contribution
	 Industry Characteristics and Risk Premia

	 Conclusion
	Online Appendix
	Asymmetric Dynamic Conditional Correlation
	Constant Price of Risk
	Interaction models and conditional variances 
	Estimating the Machine Learning Techniques
	Additional Figures and Tables

	Working Paper2024-04temp.pdf
	June 2024




